【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運(yùn)算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-30 00:48
【摘要】課題第一章常用邏輯用語命題學(xué)習(xí)目標(biāo)(1)理解命題的概念及命題的構(gòu)成,會判斷一個(gè)命題的真假.(2)理解四種命題及其關(guān)系,掌握互為逆否命題的等價(jià)關(guān)系及真假判斷.通過對命題本質(zhì)的分析,理解命題的概念.、態(tài)度與價(jià)值觀通過了解命題的基本知識,認(rèn)識命題的相互關(guān)系,對
2024-11-30 19:00
【摘要】第二章§2理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識點(diǎn)一知識點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三知識點(diǎn)三在射擊時(shí),為保證準(zhǔn)確命中目標(biāo),要考慮風(fēng)速、溫度等因素.其中風(fēng)速對射擊的精準(zhǔn)度影響最大.如某人向正北100m遠(yuǎn)處的目標(biāo)射擊,風(fēng)速為西風(fēng)1m/s.
2024-11-29 19:02
【摘要】第二章第1課時(shí)一、選擇題1.在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若a、b、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個(gè)向量p總可
2024-12-15 00:16
【摘要】課題:空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示學(xué)習(xí)目標(biāo):知識與技能:掌握空間直角坐標(biāo)系;及空間向量的坐標(biāo)表示;過程與方法:掌握空間右手直角坐標(biāo)系的概念,會確定一些簡單幾何體(正方體、長方體)的頂點(diǎn)坐標(biāo);情感態(tài)度與價(jià)值觀:由平面向量的坐標(biāo)運(yùn)算體系推廣到空間向量的坐標(biāo)運(yùn)算體系培養(yǎng)類比推理思想和一般到特殊的辨證思維能力。
【摘要】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運(yùn)算的規(guī)律;,判斷兩個(gè)向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-12-01 23:24
【摘要】aBAOlP空間向量的數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時(shí),表示a?、b
2024-12-17 06:40
【摘要】課題:夾角的計(jì)算學(xué)習(xí)目標(biāo):知識與技能:掌握空間向量的夾角公式及其簡單應(yīng)用;學(xué)生學(xué)會選擇恰當(dāng)?shù)姆椒ㄇ髪A角.過程與方法:經(jīng)歷知識的發(fā)生、發(fā)展和形成過程,提高觀察分析、類比轉(zhuǎn)化的能力;學(xué)生通過用向量法解決空間角的問題,提高數(shù)形結(jié)合能力和分析問題、解決問題的能力.情感態(tài)度價(jià)值觀:提高學(xué)生的
2024-11-30 18:59
【摘要】課題距離的計(jì)算學(xué)習(xí)目標(biāo):知識與技能:掌握空間兩條直線間距離的概念,掌握點(diǎn)與平面、直線與平面、平面與平面間距離的概念,并能進(jìn)行相互轉(zhuǎn)化,通過解三角形知識求出它們的距離。過程與方法:經(jīng)歷向量運(yùn)算平面到空間推廣的過程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價(jià)值觀培養(yǎng)學(xué)生辯證觀,簡單與復(fù)
【摘要】課題用向量討論垂直與平行學(xué)習(xí)目標(biāo)知識與技能:.2.能用向量語言表述直線與直線、直線與平面、平面與平面的垂直、平行關(guān)系.3.能用向量方法證明有關(guān)直線和平面位置關(guān)系的立體幾何問題。過程與方法①通過學(xué)習(xí)滲透類比的數(shù)學(xué)方法;②會用空間向量解決簡單的立體幾何問題,體會向量方法在研究空間圖形中的作用,培養(yǎng)學(xué)生的空間
2024-12-20 23:17
【摘要】§3.空間向量運(yùn)算的坐標(biāo)表示知識點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-12-02 03:14
【摘要】§3.空間向量的數(shù)量積運(yùn)算知識點(diǎn)一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
【摘要】課題曲線與方程(理科)學(xué)習(xí)目標(biāo):,了解曲線與方程的對應(yīng)關(guān)系..、圓與方程理解曲線與方程的關(guān)系;利用數(shù)形結(jié)合,直觀體會曲線上點(diǎn)的坐標(biāo)與方程解的關(guān)系.學(xué)習(xí)重點(diǎn):.結(jié)合已知的曲線及其方程實(shí)例,了解曲線與方程的對應(yīng)關(guān)系.學(xué)習(xí)難點(diǎn):利用數(shù)形結(jié)合,直觀體會曲線上點(diǎn)的坐標(biāo)與方程解的關(guān)系.學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《框圖》結(jié)構(gòu)圖導(dǎo)學(xué)案(無答案)北師大版選修1-2一、學(xué)習(xí)目標(biāo)1、通過實(shí)例,理解結(jié)構(gòu)圖的概念;2、能繪制簡單問題的結(jié)構(gòu)圖,體會結(jié)構(gòu)圖在揭示事物聯(lián)系中的作用.教學(xué)重點(diǎn)、難點(diǎn):運(yùn)用結(jié)構(gòu)圖梳理已學(xué)的知識,整理收集到的資料信息,根據(jù)所給的結(jié)構(gòu)圖,用語言描述框圖所包含的內(nèi)容.二、研討互動,問題生成
【摘要】aC'B'A'D'DABCGMC'B'A'D'DABC空間向量及其加減數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】,掌握空間向量的線性運(yùn)算及其性質(zhì);、減法、數(shù)乘及它們的運(yùn)算律;【自主學(xué)習(xí)】空間向量,談?wù)効臻g向量的概念、表示方法。思考: