【摘要】2020/12/24復數(shù)的乘法2020/12/24一、復數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復數(shù)的積仍是一個復數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1
2024-11-29 15:11
【摘要】復數(shù)的運算(二)【教學目標】掌握復數(shù)的除法運算,深刻理解它是乘法運算的逆運算;理解并掌握復數(shù)的除法運算實質是分母實數(shù)化類問題;體會到知識是生產實踐的需要從而積極主動地建構知識體系.【教學重點】復數(shù)除法運算規(guī)則【教學難點】分母實數(shù)化一、課前預習:(教材95頁)1.已知),(Rbabiaz???,則?z1
2024-12-01 10:27
【摘要】2020/12/24復數(shù)的除法2020/12/24復數(shù)除法的法則復數(shù)的除法是乘法的逆運算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復數(shù)x+yi,叫做復數(shù)a+bi除以復數(shù)c+di的商,記作.a+bic+di2020/12/24a+bic+
2024-11-29 12:09
【摘要】復數(shù)的概念教學目標:1.理解復數(shù)的有關概念以及符號表示;2.掌握復數(shù)的代數(shù)形式和幾何表示法,理解復平面、實軸、虛軸等概念的意義掌握復數(shù)集C與復平面內所有點成一一對應;3.理解共軛復數(shù)的概念,了解共軛復數(shù)的幾個簡單性質.教學重點:復數(shù)的有關概念,復數(shù)的表示和共軛復數(shù)的概念;教學難點:復數(shù)概念的理解,復數(shù)與復平面上點一一
2024-12-01 22:43
【摘要】高二數(shù)學學案編號19班級姓名復數(shù)的乘法一、【學習目標】理解復數(shù)乘法的運算法則,了解乘方的規(guī)則,掌握一些常見結果?!局攸c、難點】乘方的對比學習、常見結果的理解與運用。二、【教學過程】(一)復習回顧
2024-12-20 16:21
【摘要】復數(shù)的概念數(shù)系的擴充自然數(shù)整數(shù)有理數(shù)無理數(shù)實數(shù)NZQR用圖形表示包含關系:復習回顧知識引入對于一元二次方程沒有實數(shù)根.012??x我們已知知道:12??x我們能否將實數(shù)集進行擴充,使得在新的數(shù)集中,該問題能得到圓滿解決呢?
【摘要】-類比推理,發(fā)明了鋸,發(fā)明了潛水艇.,發(fā)現(xiàn)火星與地球有許多類似的特征;1)火星也繞太陽運行、饒軸自轉的行星;2)有大氣層,在一年中也有季節(jié)變更;3)火星上大部分時間的溫度適合地球上某些已知生物的生存,等等.科學家猜想;火星上也可
2024-11-30 15:24
【摘要】§演繹推理小明是一名高二年級的學生,17歲,迷戀上網絡,沉迷于虛擬的世界當中。由于每月的零花錢不夠用,便向親戚要錢,但這仍然滿足不了需求,于是就產生了歹念,強行向路人搶取錢財。但小明卻說我是未成年人而且就搶了50元,這應該不會很嚴重吧???情景創(chuàng)設1:生活中的例子如果你是法官,你會如何判決呢?小明到底是不是犯
2024-11-30 01:21
【摘要】復數(shù)的概念一、學法建議:1、本節(jié)內容概念較多,在理解的基礎上要牢記實數(shù)、虛數(shù)、純虛數(shù)與復數(shù)的關系,特別要明確:實數(shù)也是復數(shù),要把打復數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實數(shù),而不是純虛數(shù),初學復數(shù)時最易在這里出錯。2、復數(shù)z=a+bi(a、是由它實部和虛
2024-12-01 20:23
【摘要】復數(shù)的幾何意義2020年12月24日實部復數(shù)通常用字母z表示,即biaz??),(RbRa??虛部其中稱為虛數(shù)單位。i復數(shù)a+bi??????????????000000bababb,非純虛數(shù),純虛數(shù)虛數(shù)實數(shù)
2024-11-29 05:48
【摘要】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
【摘要】高二數(shù)學學案編號20班級姓名§復數(shù)代數(shù)形式的除法運算一、學習目標:1:理解并掌握復數(shù)的代數(shù)形式與除法運算法則,深刻理解它是乘法運算的逆運算奎屯王新敞新疆2:理解并掌握復數(shù)的除法運算實質是分母實數(shù)化類問題奎
2024-12-14 10:00
【摘要】復習:合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠導電.銅是金屬,
【摘要】反證法一.反證法證明命題“設p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設p不是偶數(shù),可令p=2k+1,k為整數(shù)。可得p2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設矛盾,因此假設p不是偶數(shù)不成立,從而證明
【摘要】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質數(shù)+奇質數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個