【摘要】最大值、最小值問題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識解決實際問題的能力.學(xué)習(xí)重點:求函數(shù)的最值及求實際問題的最值.學(xué)習(xí)難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點要把實際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-17 06:35
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)最大值與最小值課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當(dāng)x1時,f′(x)0,x1時
2024-12-16 18:01
【摘要】第3課時函數(shù)的最大值與最小值,了解其與函數(shù)極值的區(qū)別與聯(lián)系.[a,b]上連續(xù)的函數(shù)f(x)的最大值和最小值的方法和步驟.如圖,設(shè)鐵路線AB=50km,點C處與B之間的距離為10km,現(xiàn)將貨物從A運往C,已知1km鐵路費用為2元,1km公路費用為4元,在AB上M處修筑公
2024-12-01 23:14
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-30 08:47
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點
2024-12-01 13:08
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第10課時函數(shù)的最大值與最小值教學(xué)目標(biāo):;和步驟.教學(xué)重點:利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法教學(xué)難點:函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué):::
2024-12-01 17:30
【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲担?、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點:掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點:提高“用導(dǎo)數(shù)求函數(shù)的極值及
2024-12-20 01:48
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(最大值與最小值)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最小)值;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的最大值與最小值的方法【課前預(yù)習(xí)】
2024-12-02 00:30
【摘要】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識解決實際問題的能力.二、教學(xué)重點:求函數(shù)的最值及求實際問題的最值.教學(xué)難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點要把實際問題“數(shù)學(xué)化”
2024-12-01 19:27
【摘要】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實際問題如圖,有一長80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個長方體無蓋容器,要分別過矩形四個頂點處各挖去一個全等的小正方形,按加工要求,長方體的高不小
2024-11-22 00:27
【摘要】若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不易顯化.則稱此函數(shù)為隱函數(shù).第三節(jié)隱函數(shù)的導(dǎo)數(shù)和由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)0),(?yxF
2024-08-16 16:24
【摘要】(1)基本不等式(2)基本不等式的最大值與最小值對于任意實數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當(dāng)且僅當(dāng)x=y時等號成立22x+y≥xy2如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時,等號成立.a+b≥ab2,,
2024-08-09 16:08
【摘要】MaximumValue&MinimumValueofFunctionliiltif江西省臨川一中:游建龍江西省臨川一中:游建龍說教材說目標(biāo)說教法說學(xué)法說過程說設(shè)計說教材說目標(biāo)說教法說學(xué)法說過程目標(biāo)制定教法選擇學(xué)法指導(dǎo)教學(xué)過程教材分析
2025-05-30 23:42
【摘要】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測)若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為____.【解析】f′
2024-11-24 18:11
【摘要】最大值、最小值問題一、最大值、最小值的求法二、應(yīng)用一、最值的求法oxyoxybaoxyabab.],[)(],[)(在上的最大值與最小值存在個導(dǎo)數(shù)為零的點,則可導(dǎo),并且至多有有限處上連續(xù),除個別點外處在若函數(shù)baxfbaxf步驟:;,比較大
2024-08-31 01:39