【摘要】課時教案授課章節(jié)及題目偏導(dǎo)數(shù)與全微分(1)授課時間周二第3、4節(jié)課次1學(xué)時2教學(xué)目標(biāo)與要求1、了解二元函數(shù)偏導(dǎo)數(shù)的定義2、掌握求二元函數(shù)偏導(dǎo)數(shù)的方法教學(xué)重點與難點教學(xué)重點:二元函數(shù)偏導(dǎo)數(shù)的求法教學(xué)難點:二元函數(shù)偏導(dǎo)數(shù)的定義教學(xué)用具無教學(xué)過程環(huán)節(jié)、時間授課內(nèi)容教學(xué)方法課程導(dǎo)入(5分
2024-08-20 01:51
【摘要】第八章第三節(jié)機動目錄上頁下頁返回結(jié)束二、多變量函數(shù)的偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)多變量函數(shù)的微分和偏導(dǎo)數(shù)第八章一、多變量函數(shù)的微分一、多變量函數(shù)的微分定義設(shè)在的鄰域中有定義,
2024-08-09 18:36
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2024-09-11 12:42
【摘要】一、全微分二、全微分在近似計算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對x和對y的偏微分(partialdifferential)二元函數(shù)對
2024-09-01 16:43
【摘要】AP微積分之利用微分求導(dǎo)數(shù) AP微積分作為美國大學(xué)一年級的數(shù)學(xué)課,大部分高中都會都接觸微積分,并且我國高中的數(shù)學(xué)要求高于美國。所以小編建議學(xué)習(xí)AP微積分建議跟老師學(xué)習(xí),因為它畢竟是一門課程?! ??AP微積分課程的三大基本功:求極限,求導(dǎo)數(shù),求積分。 ??在導(dǎo)數(shù)這一部分,高中階段普遍使用導(dǎo)數(shù)規(guī)則來求。但是當(dāng)同學(xué)們學(xué)到多元微積分之后,更為有力的工具是全微分,因為它是一次施
2024-08-19 10:38
【摘要】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-17 13:30
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-05-06 04:25
【摘要】第一篇:不定積分,二元函數(shù)的定義域,極限,方向?qū)?shù)和梯度 不定積分、二元函數(shù)的定義域、極限、方向?qū)?shù)和梯度 一、定積分及應(yīng)用 ⒈了解定積分的概念;知道定積分的定義、幾何意義和物理意義;了解定積分...
2024-10-21 17:22
【摘要】1§導(dǎo)數(shù)在經(jīng)濟學(xué)中的應(yīng)用邊際和彈性是經(jīng)濟學(xué)中的兩個重要概念。用導(dǎo)數(shù)來研究經(jīng)濟變量的邊際與彈性的方法,稱之為邊際分析與彈性分析。一、邊際分析(離散的經(jīng)濟變量連續(xù)化)()fx?0x0()?fx1、定義8經(jīng)濟學(xué)中,把函數(shù)?(x)的導(dǎo)函數(shù)稱為?(x)
2024-10-15 14:57
【摘要】反射光線的方向取決于入射點和該點處的切線.從橢圓的一個焦點發(fā)出的光線經(jīng)橢圓反射后必經(jīng)過另一個焦點.§1導(dǎo)數(shù)1.切線問題第二章一元函數(shù)微分學(xué)零.引例?因而切線MT的斜率為00)()(tanxxxfxf????,)()(limtan
2024-12-17 01:11
【摘要】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-24 21:33
【摘要】2022/2/131作業(yè)6(3)(6)(9)(11)(14)(17).9(4)(8)(15)(21).10(8).11(2).12(2).P67習(xí)題2022/2/132二、高階導(dǎo)數(shù)第六講
2025-01-25 06:42
【摘要】一、偏導(dǎo)數(shù)的定義及其計算方法二、偏導(dǎo)數(shù)的幾何意義及函數(shù)偏導(dǎo)數(shù)存在與函數(shù)連續(xù)的關(guān)系三、高階偏導(dǎo)數(shù)第二節(jié)偏導(dǎo)數(shù)及其在經(jīng)濟分析中的應(yīng)用五、小結(jié)思考題四、偏導(dǎo)數(shù)在經(jīng)濟分析中的應(yīng)用交叉彈性定義設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,
【摘要】三角函數(shù)誘導(dǎo)公式tgA=tanA=sin(-a)=cosasin(+a)=cosasin(π-a)=sinasin(π+a)=-sinacos(-a)=cosacos(-a)=sinacos(+a)=-sinacos(π-a)=-cosacos(π+a)=-cosa
2025-07-02 18:29
【摘要】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運動的速度設(shè)描述質(zhì)點運動位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時刻的瞬時速度為00)()(lim0tttstsvtt????221tg
2025-05-06 05:05