【摘要】主要內容典型例題第十一章無窮級數習題課常數項級數函數項級數正項級數交錯級數冪級數收斂半徑R泰勒展開式數或函數函數數一般項級數泰勒級數0)(?xRn為
2024-09-11 12:39
【摘要】主要內容典型例題第六章定積分及其應用習題課(一)問題1:曲邊梯形的面積問題2:變速直線運動的路程存在定理廣義積分定積分定積分的性質定積分的計算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2024-09-11 12:42
【摘要】一、問題的提出二、導數的定義四、函數可導性與連續(xù)性的關系五、小結思考題三、導數的幾何意義第一節(jié)導數概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2024-09-11 12:41
【摘要】一、高階導數的定義二、高階導數的求導法則三、小結思考題第三節(jié)高階導數一、高階導數的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-09-11 12:37
【摘要】一、全微分二、全微分在近似計算中的應用三、小結思考題第三節(jié)全微分及其應用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數對x和對y的偏微分(partialdifferential)二元函數對
2024-09-01 16:43
【摘要】1嬡計艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復習嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關?學習內容串講?一些作業(yè)中的問題?一些難點綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂智臚總亭渥剪4復習備考1-網絡輔助
2024-11-12 21:17
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設函數)(
2024-09-11 12:46
【摘要】2022/2/131作業(yè)6(3)(6)(9)(11)(14)(17).9(4)(8)(15)(21).10(8).11(2).12(2).P67習題2022/2/132二、高階導數第六講
2025-01-25 06:42
【摘要】推廣一元函數微分學二元函數微分學注意:善于類比,區(qū)別異同二元函數微積分一、區(qū)域二、二元函數的概念二元函數的基本概念區(qū)域平面上滿足某個條件的一切點構成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2025-08-04 01:41
【摘要】一、問題的提出二、積分上限函數及其導數三、牛頓-萊布尼茨公式四、小結思考題第三節(jié)微積分基本公式變速直線運動中位置函數與速度函數的聯系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數,且0)(?tv
2024-09-01 08:39
【摘要】AP微積分之利用微分求導數 AP微積分作為美國大學一年級的數學課,大部分高中都會都接觸微積分,并且我國高中的數學要求高于美國。所以小編建議學習AP微積分建議跟老師學習,因為它畢竟是一門課程?! ??AP微積分課程的三大基本功:求極限,求導數,求積分?! ??在導數這一部分,高中階段普遍使用導數規(guī)則來求。但是當同學們學到多元微積分之后,更為有力的工具是全微分,因為它是一次施
2024-08-19 10:38
【摘要】1§導數在經濟學中的應用邊際和彈性是經濟學中的兩個重要概念。用導數來研究經濟變量的邊際與彈性的方法,稱之為邊際分析與彈性分析。一、邊際分析(離散的經濟變量連續(xù)化)()fx?0x0()?fx1、定義8經濟學中,把函數?(x)的導函數稱為?(x)
2024-10-15 14:57
【摘要】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設所求曲線為d2dyxx?2dyxx??積分,得2,
2024-09-11 12:40
【摘要】第四節(jié)高階導數引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數在點為函數則稱存在即處可導在點的導數如果函數xxfxfxxfxxfxf
2025-05-06 04:25
2025-01-25 06:20