【摘要】1167。微分中值定理1.填空題(1)函數(shù)xxfarctan)(?在]1,0[上使拉格朗日中值定理結(jié)論成立的ξ是???4.(2)設(shè))5)(3)(2)(1()(?????xxxxxf,則0)(??xf有3個(gè)實(shí)根,分別位于區(qū)間)5,3(),3,2(),2,1(中.2.
2025-01-18 08:25
【摘要】第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用答案28§微分中值定理1.填空題(1)函數(shù)在上使拉格朗日中值定理結(jié)論成立的ξ是.(2)設(shè),則有3個(gè)實(shí)根,分別位于區(qū)間中.2.選擇題(1)羅爾定理中的三個(gè)條件:在上連續(xù),在內(nèi)可導(dǎo),且,是在內(nèi)至少存在一點(diǎn),使成立的(B).A.必要條件B.充分條件
2025-04-03 06:50
【摘要】推廣一元函數(shù)微分學(xué)二元函數(shù)微分學(xué)注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個(gè)條件的一切點(diǎn)構(gòu)成的集合。平面點(diǎn)集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點(diǎn)集稱為平面區(qū)域,通常記作D。0xy1
2025-08-04 01:41
【摘要】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運(yùn)動(dòng)的速度設(shè)描述質(zhì)點(diǎn)運(yùn)動(dòng)位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時(shí)刻的瞬時(shí)速度為00)()(lim0tttstsvtt????221tg
2025-05-06 05:05
【摘要】一、問題的提出二、導(dǎo)數(shù)的定義四、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導(dǎo)數(shù)的幾何意義第一節(jié)導(dǎo)數(shù)概念一、問題的提出0tt?,0時(shí)刻的瞬時(shí)速度求tt考慮最簡單的變速直線運(yùn)動(dòng)--自由落體運(yùn)動(dòng),如圖,,0tt的時(shí)刻取一鄰近于,?運(yùn)動(dòng)時(shí)間ts???v平均速度
2024-09-11 12:41
【摘要】一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)的求導(dǎo)法則三、小結(jié)思考題第三節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-09-11 12:37
【摘要】主要內(nèi)容典型例題第四章中值定理與導(dǎo)數(shù)的應(yīng)用習(xí)題課洛必達(dá)法則Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0??型???型??0型00型??Cauchy中值定理Taylor中值定理xxF?)()()(bfaf?0?n
2024-09-11 12:46
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運(yùn)動(dòng)),(tss?)()(tstv??則瞬時(shí)速度為的變化率對時(shí)間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-05-06 04:25
【摘要】中值定理洛必達(dá)法則函數(shù)的單調(diào)性與極值函數(shù)圖形的描繪導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用結(jié)束第3章中值定理、導(dǎo)數(shù)應(yīng)用前頁結(jié)束后頁定理1設(shè)函數(shù)滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-03-02 10:32
【摘要】第三章§3理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二考點(diǎn)三對于函數(shù)y=-12x2+2x.問題1:如何求f′(1)?問題2:如何求f′(x)?問題3:f′(x)與f
2024-11-29 17:15
【摘要】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-30 19:54
【摘要】定理(極值第二判別法)0()0,xxfx???.)(,0)()1(00為極小值則若xfxf???.)(,0)()2(00為極大值則若xfxf???.)(,0)()3(00是否為極值則不能判斷若xfxf???證:(1)由導(dǎo)數(shù)定義,有000)()(lim)(0xxxfxfxfxx????
2025-05-26 02:52
【摘要】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁退出本節(jié)知識引入本節(jié)目的與要求本節(jié)重點(diǎn)
2024-08-16 17:50
【摘要】一、隱函數(shù)的導(dǎo)數(shù)三、小結(jié)思考題二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第四節(jié)隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)定義:.)(0),(稱為隱函數(shù)所確定的函數(shù)由方程xyyyxF??.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯
2024-09-12 01:20
【摘要】1第三章中值定理與導(dǎo)數(shù)應(yīng)用第三章中值定理與導(dǎo)數(shù)應(yīng)用§3-1中值定理§3-2洛必達(dá)法則§3-3函數(shù)單調(diào)性的判別§3-4函數(shù)的極值與最值§3-5建模與最優(yōu)化§3-6曲線的凹凸判別2第三章中值定理與導(dǎo)數(shù)應(yīng)用§3
2024-08-19 10:06