【摘要】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)),(),,(,,),(),(),(),(limlim),(),(,,)1(0000),(),(0000000000000000000yxfyxzxzxfxyxyxfxyxfyxxfxfyxfyxxffxxxyyxxyxyxxx
2025-05-23 17:31
【摘要】在一元函數(shù)微分學(xué)中,復(fù)合函數(shù)的鏈?zhǔn)角髮?dǎo)法則是最重要的求導(dǎo)法則之一,它解決了很多比較復(fù)雜的函數(shù)的求導(dǎo)問題.對于多元函數(shù),也有類似的求導(dǎo)法則.與一元復(fù)合函數(shù)求導(dǎo)相比,,中間變量和都可以是和的二元函數(shù);也可以只是某一個變量的函數(shù),還可能中間變量和分別是不同個數(shù)自變量的函數(shù),譬如是的函數(shù),而只是的函數(shù);等等。下面討論二元復(fù)合函數(shù)的求導(dǎo)法則,對二元以上的多元函數(shù)的求導(dǎo)法則可類似推出.,
2025-08-01 06:55
【摘要】參變量函數(shù)的導(dǎo)數(shù)一、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù).,)()(定的函數(shù)稱此為由參數(shù)方程所確間的函數(shù)關(guān)系與確定若參數(shù)方程xytytx???????例如?????,,22tytx2xt?消去參數(shù)22)2(xty???42x?xy21???
2025-07-27 14:25
【摘要】l對一元函數(shù):導(dǎo)數(shù)描述了函數(shù)在處的瞬時(shí)變化率,它的幾何意義就是函數(shù)曲線上點(diǎn)處的切線的斜率。l對于多元函數(shù),我們同樣感興趣它在某處的瞬時(shí)變化率問題,以二元函數(shù)為例,我們分別討論:相對于以及相對于的瞬時(shí)變化率——偏導(dǎo)數(shù)偏導(dǎo)數(shù)的定義偏導(dǎo)數(shù)的定義設(shè)函數(shù)在點(diǎn)的某一鄰域
2025-05-07 23:20
【摘要】課時(shí)教案授課章節(jié)及題目偏導(dǎo)數(shù)與全微分(1)授課時(shí)間周二第3、4節(jié)課次1學(xué)時(shí)2教學(xué)目標(biāo)與要求1、了解二元函數(shù)偏導(dǎo)數(shù)的定義2、掌握求二元函數(shù)偏導(dǎo)數(shù)的方法教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):二元函數(shù)偏導(dǎo)數(shù)的求法教學(xué)難點(diǎn):二元函數(shù)偏導(dǎo)數(shù)的定義教學(xué)用具無教學(xué)過程環(huán)節(jié)、時(shí)間授課內(nèi)容教學(xué)方法課程導(dǎo)入(5分
2024-08-20 01:51
【摘要】偏導(dǎo)數(shù)與全微分習(xí)題1.設(shè),求。2.習(xí)題817題。3.設(shè),考察f(x,y)在點(diǎn)(0,0)的偏導(dǎo)數(shù)。4.考察在點(diǎn)(0,0)處的可微性。5.證明函數(shù)在點(diǎn)(0,0)連續(xù)且偏導(dǎo)數(shù)存在,但偏導(dǎo)數(shù)在(0,0)不連續(xù),而f(x,y)在點(diǎn)(0,0)可微。1.設(shè),求?!?。
2025-08-02 22:32
【摘要】§多元函數(shù)的偏導(dǎo)數(shù)與全微分(一)主要內(nèi)容?偏導(dǎo)數(shù)的概念及計(jì)算方法?高階導(dǎo)數(shù)定義8.3設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(
【摘要】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)?一、偏導(dǎo)數(shù)的定義及其計(jì)算法?二、高階偏導(dǎo)數(shù)定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf?
2025-05-16 22:29
【摘要】返回后頁前頁導(dǎo)數(shù)是微分學(xué)的核心概念,是研究函數(shù)§1導(dǎo)數(shù)的概念一、導(dǎo)數(shù)的概念化率”,就離不開導(dǎo)數(shù).三、導(dǎo)數(shù)的幾何意義二、導(dǎo)函數(shù)態(tài)的有力工具.無論何種學(xué)科,只要涉及“變與自變量關(guān)系的產(chǎn)物,又是深刻研究函數(shù)性返回返回后頁前頁一、導(dǎo)數(shù)的
2024-09-02 19:14
【摘要】定義含有未知函數(shù)的導(dǎo)數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2024-10-28 13:27
【摘要】1§預(yù)備知識§多元函數(shù)的概念§偏導(dǎo)數(shù)§全微分及其應(yīng)用§多元復(fù)合函數(shù)的微分法§隱函數(shù)的微分法§二元函數(shù)的極值與最值第八章多元函數(shù)的微分法及其應(yīng)用(,)zfxy?2zbxy
2024-10-24 14:32
【摘要】第二章導(dǎo)數(shù)與微分?導(dǎo)數(shù)的概念?函數(shù)的和、差、積、商的求導(dǎo)法則?復(fù)合函數(shù)的求導(dǎo)法則?隱函數(shù)的導(dǎo)數(shù)?初等函數(shù)的導(dǎo)數(shù)?﹡導(dǎo)數(shù)的經(jīng)濟(jì)定義?高階導(dǎo)數(shù)?函數(shù)的微分下頁1.導(dǎo)數(shù)的定義2.導(dǎo)數(shù)的幾何意義3.可導(dǎo)與連續(xù)的關(guān)系首頁上頁下頁
2024-10-10 14:11
【摘要】返回后頁前頁§4高階導(dǎo)數(shù)當(dāng)我們研究導(dǎo)函數(shù)的變化率時(shí)就產(chǎn)生了高階導(dǎo)數(shù).如物體運(yùn)動規(guī)律為,()sst?它的運(yùn)動速度是,而速度在時(shí)刻()vst??()()().atvtst?????t的變化率就是物體在時(shí)刻的加速度t返回返回
2024-08-23 10:51
【摘要】二、可微的條件一、全微分的概念多元函數(shù)的全微分第三節(jié)第八章函數(shù)的微分一元函數(shù)y=f(x)的增量:)()(xfxxfy?????xxfy???)(d(當(dāng)一元函數(shù)y=f(x)可導(dǎo)時(shí))二元函數(shù)z=f(x,y):),(),(yxfyxxfzx?????(當(dāng)二元函數(shù)
2025-01-28 14:35
【摘要】......導(dǎo)數(shù)中雙變量的函數(shù)構(gòu)造21.(12分)已知函數(shù)(). (1)若函數(shù)是單調(diào)函數(shù),求的取值范圍;(2)求證:當(dāng)時(shí),都有.21.解:(1)函數(shù)的定義域?yàn)?,∵,∴,∵函?shù)是單調(diào)函數(shù),∴或在上恒成立,①∵,∴,即,,
2025-05-25 03:43