【正文】
向量的一些基本性質(zhì)及定理,通過(guò)分析基本性質(zhì)和定理來(lái)得出它們的基本求解方法,并延伸到一些特殊求解法。接下來(lái)還介紹了一類(lèi)特殊矩陣——實(shí)對(duì)稱(chēng)矩陣的特征值與特征向量,這讓讀者對(duì)矩陣的特征值與特征向量有更進(jìn)一步的理解。這讓我們明白研究它們不僅僅因?yàn)樗鼈兪菍W(xué)術(shù)知識(shí),更是為了將它們應(yīng)用到實(shí)際中去,解決實(shí)際問(wèn)題,讓我們的社會(huì)得到更快的發(fā)展。關(guān)鍵詞: 矩陣、特征值、特征向量、正交、線性相關(guān)、線性無(wú)關(guān)、特征多項(xiàng)式 I Matrix eigenvalue and eigenvector Zhong Yueyuan (Science and information science department 2009 level of mathematics and applied mathematics at Shaoyang University in Hunan.)Abstract This paper introduces the value and some basic properties and theorems of eigenvectors of the matrix characteristic, through the analysis of the basic properties and theorems to derive basic solving method for them, and extends to some special method. Then it introduces the characteristics of a class of special matrix the real symmetric matrix value and the characteristic vector, the reader of matrices have further understanding and feature vector. Finally gives the matrix eigenvalue and eigenvector of the application in the actual us understand this study them not only because they are the academic knowledge, but also to apply them to practice, to solve practical problems, to make our society develop quickly. By reading this article, readers can learn in the future to solve the matrix is easier to grasp.Key word : Matrix, eigenvalue, eigenvector, orthogonal, linear correlation, linear independence, characteristic polynomial II目 錄中文摘要...................................................................................................ⅠAbstract.........................................................................................................Ⅱ引言...........................................................................................................11 矩陣的特征值與特征向量................................................................1 矩陣的特征值與特征向量的定義及基本理論.................................1 求解矩陣的特征值與特征向量方法 ..............................................42 實(shí)對(duì)稱(chēng)矩陣的特征值與特征向量...................................................7 實(shí)對(duì)稱(chēng)矩陣的性