【摘要】教學(xué)內(nèi)容 二次函數(shù)與冪函數(shù)1.二次函數(shù)的定義與解析式(1)二次函數(shù)的定義形如:f(x)=ax2+bx+c_(a≠0)的函數(shù)叫作二次函數(shù)
2025-07-02 21:39
【摘要】第二節(jié)二次函數(shù)的圖像與性質(zhì)1.能夠利用描點法做出函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k和圖象,能根據(jù)圖象認(rèn)識和理解二次函數(shù)的性質(zhì);2.理解二次函數(shù)中a、b、c對函數(shù)圖象的影響。一、二次函數(shù)圖象的畫法五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標(biāo),然后在對稱軸兩側(cè),:頂點、與軸的交點、以及關(guān)于對稱軸對稱的點、與
2025-07-02 13:56
【摘要】第二部分圓錐曲線(一)---橢圓知識點一:1、平面內(nèi)與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡稱為橢圓.即:。 注意:若,則動點的軌跡為線段;這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.2、橢圓的幾何性質(zhì):標(biāo)準(zhǔn)方程圖形性質(zhì)焦點,,焦距范圍,,對稱性關(guān)于軸、軸和原點對稱頂點
2024-08-20 08:01
【摘要】《函數(shù)及其圖像》知識點一、函數(shù)的概念、變量(自變量、因變量)、常量的概念。①變量:在某一函數(shù)變化過程中,可以取不同數(shù)值的量,叫做變量。②自變量:在某一函數(shù)變化過程中,主動變化的量的叫做自變量。③因變量:在某一函數(shù)變化過程中,因為自變量的變化而被動變化的量叫做因變量。此時,我們也稱因變量是自變量的函數(shù)④常量:在某一函數(shù)變化中,始終保持不變的量,叫做常量。練習(xí):在函數(shù)中,自變
2025-06-27 22:00
【摘要】函數(shù)及其表示一、知識梳理1.映射的概念設(shè)是兩個集合,如果按照某種對應(yīng)法則,對于集合中的任意元素,在集合中都有唯一確定的元素與之對應(yīng),那么這樣的單值對應(yīng)叫做從到的映射,通常記為,f表示對應(yīng)法則注意:⑴A中元素必須都有象且唯一;⑵B中元素不一定都有原象,但原象不一定唯一。2.函數(shù)的概念(1)函數(shù)的定義:設(shè)是兩個非空的數(shù)集,如果按照某種對應(yīng)法則,對于集合中的,在
2025-06-27 20:32
【摘要】函數(shù)的基本性質(zhì)基礎(chǔ)知識:(1)定義:如果對于函數(shù)f(x)定義域內(nèi)的任意x都有f(-x)=-f(x),則稱f(x)為奇函數(shù);如果對于函數(shù)f(x)定義域內(nèi)的任意x都有f(-x)=f(x),則稱f(x)為偶函數(shù)。如果函數(shù)f(x)不具有上述性質(zhì),則f(x),則f(x)既是奇函數(shù),又是偶函數(shù)。注意:①函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);②由函數(shù)的奇
2025-06-27 20:22
【摘要】第十八章函數(shù)一次函數(shù)(1)函數(shù)1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。*判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定
2025-07-03 14:46
【摘要】復(fù)習(xí):冪函數(shù)的概念討論冪函數(shù)的性質(zhì):函數(shù)y=xα(α是常數(shù))叫做冪函數(shù)冪函數(shù)由于指數(shù)α的不同,它們的定義域也不同,性質(zhì)(有界性、單調(diào)性、奇偶性、周期性)也不同。主要分α0和α0兩大類情況去討論它們的定義域、單調(diào)性、奇偶性。定義:
2024-11-29 22:48
【摘要】函數(shù)圖像與性質(zhì)知識點總結(jié)和經(jīng)典題型1.正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像2.三角函數(shù)的單調(diào)區(qū)間:求三角函數(shù)的單調(diào)區(qū)間:一般先將函數(shù)式化為基本三角函數(shù)的標(biāo)準(zhǔn)式,要特別注意A、的正負(fù)利用單調(diào)性三角函數(shù)大小一般要化為同名函數(shù),并且在同一單調(diào)區(qū)間;的遞增區(qū)間是,遞減區(qū)間是;的遞增區(qū)間是,遞減區(qū)間是,的遞增區(qū)間是,3.對稱軸與對稱中心:的對稱軸為,對稱中心為;
2025-07-04 08:58
【摘要】反比例函數(shù)一、基礎(chǔ)知識1.定義:一般地,形如(為常數(shù),)的函數(shù)稱為反比例函數(shù)。(自變量的取值:)2.反比例函數(shù)的等價形式:①()②()③xy=k()3.反比例函數(shù)的圖像⑴圖像的畫法:描點法①列表(應(yīng)以O(shè)為中心,沿O的兩邊分別取三對或以上互為相反的數(shù))②描點(有小到大的順序)③連線(從左到右光滑的曲線
2025-07-05 01:01
【摘要】考點一、平面直角坐標(biāo)系1、平面直角坐標(biāo)系在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象
2025-04-01 05:32
【摘要】考點一、平面直角坐標(biāo)系1、平面直角坐標(biāo)系在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第
2025-07-06 13:21
2025-06-09 05:37
【摘要】一對一個性輔導(dǎo)一對一七年級數(shù)學(xué)教師輔導(dǎo)講義課題第1講有理數(shù)授課時間:備課時間:教學(xué)目標(biāo)1、掌握有理數(shù)的分類,學(xué)會把有理數(shù)對應(yīng)的點畫在數(shù)軸上;2、掌握相反數(shù)、絕對值、倒數(shù)的求法,會比較有理數(shù)的大??;3、掌握有理數(shù)的大小比較;
2025-06-08 22:06
【摘要】沿途教育必修四第一章三角函數(shù)一、任意角和弧度制1、角的概念的推廣定義:一條射線OA由原來的位置,繞著它的端點O按一定的方向旋轉(zhuǎn)到另一位置OB,就形成了角,記作:角或可以簡記成。注意:(1)“旋轉(zhuǎn)”形成角,突出“旋轉(zhuǎn)”(2)“頂點”“始邊”“終邊”“始邊”往往合于軸正半軸(3)“正角”
2025-07-02 03:41