【摘要】第一篇:初二數(shù)學(xué)幾何證明題 △ABC中,AB=AC,D在AB上,E在AC的延長(zhǎng)線上,且BD=CE,線段DE交BC于點(diǎn)F,說明:DF=EF。 :在正方形ABCD中,M是AB的中點(diǎn),E是AB延長(zhǎng)線上的...
2024-10-27 18:20
【摘要】第一篇:中考數(shù)學(xué)經(jīng)典幾何證明題 2011年中考數(shù)學(xué)經(jīng)典幾何證明題 (一)1.(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點(diǎn)O,E、F分別是AD、BC的中點(diǎn),聯(lián)結(jié)EF,分別交A...
2024-10-28 23:38
【摘要】中考數(shù)學(xué)經(jīng)典幾何證明題(一)1.(1)如圖1所示,在四邊形中,=,與相交于點(diǎn),分別是的中點(diǎn),聯(lián)結(jié),分別交、于點(diǎn),試判斷的形狀,并加以證明;(2)如圖2,在四邊形中,若,分別是的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),分別與的延長(zhǎng)線交于點(diǎn),請(qǐng)?jiān)趫D2中畫圖并觀察,圖中是否有相等的角,若有,請(qǐng)直接寫出結(jié)論:;(3)如圖3,在中,,點(diǎn)在上,,分別是的中點(diǎn),聯(lián)結(jié)并延長(zhǎng),與
2025-04-13 03:01
【摘要】第一篇:初二(下)幾何證明題練習(xí)(一) 初二(下)幾何證明題練習(xí) (一),∠EAF=45°(1)探究BP、PQ、DQ關(guān)系;(2)探究DE、BP、AB關(guān)系; (3)連接AC,探究AC、CM、CN的...
2024-10-29 00:57
【摘要】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個(gè) B、1個(gè)
2025-04-03 02:03
【摘要】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
2025-04-02 12:34
【摘要】八年級(jí)上冊(cè)幾何題專題訓(xùn)練100題1、已知:在⊿ABC中,∠A=900,AB=AC,在BC上任取一點(diǎn)P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中點(diǎn),求證:⊿RDQ是等腰直角三角形。2、已知:在⊿ABC
2025-04-02 12:38
【摘要】八年級(jí)上冊(cè)幾何題專題訓(xùn)練50題1.如圖,已知△EAB≌△DCE,AB,EC分別是兩個(gè)三角形的最長(zhǎng)邊,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度數(shù).2.如圖,點(diǎn)E、A、B、F在同一條直線上,AD與BC交于點(diǎn)O,已知∠CAE=∠DBF,AC=:∠C=∠D,OP平分∠AOB
【摘要】第一篇:中考數(shù)學(xué)幾何證明題 中考數(shù)學(xué)幾何證明題 在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.(1)在圖1中證明CE=CF; (2)若∠ABC=90°,G是EF的中點(diǎn)(如圖...
2024-10-15 02:41
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】必修二立體幾何經(jīng)典證明試題1.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設(shè)知,∴=,即
【摘要】第一篇:經(jīng)典數(shù)學(xué)證明題 .證明:AB (25分)2.AB為y=1-x2上在y軸兩側(cè)的點(diǎn),求過AB的切線與x軸圍成面積的最小值.(25分) 3.向量OA與OBOA=1OB=2,OP=(1-t)OA...
2024-10-13 19:35
2025-04-16 20:38
【摘要】第一篇:數(shù)學(xué)幾何證明題(提高篇) 1.已知:如圖,P是正方形ABCD內(nèi)點(diǎn),∠PAD=∠PDA=15°.求證:△PBC是正三角 形. 2.已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是A...
2024-10-28 03:06