【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第1課時(shí)常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.下列結(jié)論不正確的是()A.若y=3,則y′=0B.若y=1x,則y′=-12xC.若y=x,則y′=12xD.若y=x,則y′=1[
2024-12-15 11:28
【摘要】選修1-2導(dǎo)數(shù)的幾何意義一、選擇題1.曲線y=x2在x=0處的()A.切線斜率為1B.切線方程為y=2xC.沒有切線D.切線方程為y=0[答案]D[解析]k=y(tǒng)′=limΔx→0(0+Δx)2-02Δx=limΔx→0Δx=0,所以k=0,又y=x
2024-12-03 22:43
【摘要】11(3)解:212sec2yxxx????y=(1sin)sin(cos)cosxxxxx????sincoscos2xxxx???3(3)解一:??y=sinsincosxxxx???3(3)解二:22si
2025-08-02 06:07
【摘要】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動(dòng)過程中,在某時(shí)刻的瞬時(shí)速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個(gè)統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:);()
2024-11-30 12:09
【摘要】常見函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2024-12-01 13:11
【摘要】高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義xxfxxfxfx???????????)()(lim))((0問題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftvta定義:即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù),)()(xxfxf?.
2025-08-02 07:11
【摘要】§1機(jī)動(dòng)目錄上頁下頁返回結(jié)束導(dǎo)數(shù)第二章§高階導(dǎo)數(shù)§參數(shù)式函數(shù)與隱函數(shù)的導(dǎo)數(shù)二、高階導(dǎo)數(shù)的運(yùn)算法則§一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)一、高階導(dǎo)
2025-08-02 09:55
【摘要】四、反函數(shù)1()xfy??y=f(x)與互為反函數(shù),在同一平面直1()xfy??角坐標(biāo)系中表示同一條曲線.習(xí)慣上常將y=f(x)的反函數(shù)寫作,此1()yfx??時(shí)兩者在同一平面直角坐標(biāo)系中的圖形關(guān)于y=x對(duì)稱.若對(duì)函數(shù)
2025-08-02 06:10
【摘要】§導(dǎo)數(shù)的運(yùn)算常數(shù)與冪函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)公式表一、基礎(chǔ)過關(guān)1.下列結(jié)論中正確的個(gè)數(shù)為()①y=ln2,則y′=12②y=1x2,則y′|x=3=-227③y=2x,則y′=2xln2④y=log2x,則y′=1xln2A.0
2024-12-15 11:30
【摘要】1第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-05-09 12:01
【摘要】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導(dǎo)數(shù)?1.原函數(shù)與不定積分的概念?2.積分計(jì)算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設(shè)f(z)在單連通區(qū)域B內(nèi)解析,則對(duì)B中任意曲線C,積分?cfdz與路徑
2025-05-27 01:34
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解兩個(gè)函數(shù)的積的導(dǎo)數(shù)法則、和(或差)的導(dǎo)數(shù)法則,學(xué)會(huì)用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù)教學(xué)重點(diǎn):靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點(diǎn):函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用.
2024-12-17 06:45
【摘要】*微分學(xué)是微積分的重要組成部分,它的基本概念是導(dǎo)數(shù)和微分.*兩個(gè)基本概念來源于兩類問題:1)研究函數(shù)在某點(diǎn)變化的快慢,即變化率問題;2)研究當(dāng)自變量變化少許時(shí),函數(shù)變化了多少,即改變量問題;*本章基本內(nèi)容就是建立導(dǎo)數(shù)和微分的概念,討論函數(shù)的求導(dǎo)方法和微分運(yùn)算方法.前者引出
2025-01-28 10:38
【摘要】導(dǎo)數(shù)基本知識(shí)匯總試題基本知識(shí)點(diǎn):知識(shí)點(diǎn)一、基本初等函數(shù)的導(dǎo)數(shù)公式表(須掌握的知識(shí)點(diǎn))1、2、(n為正整數(shù))3、4、5、6、7、8、知識(shí)點(diǎn)二:導(dǎo)數(shù)的四則運(yùn)算法則1、2、3、4、知識(shí)點(diǎn)三:利用函數(shù)導(dǎo)數(shù)判斷函數(shù)單調(diào)性的法則1、如果在內(nèi),,則在此區(qū)間是增區(qū)間,為的單調(diào)增區(qū)間。2、如果在
2025-07-09 20:03