【正文】
hich contains hard builtupedge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situatio n is particularly noticeable when machining very ductile materials such as copper and aluminum. 4 (3) The stability of the machine tool. Under some binations of cutting conditions: work piece size , method of clamping, and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and work piece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the work piece surface and short pitch undulations on the transient machined surface. (4) The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps ate taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking beside a looking unattractive, often results in a poorer surface finishing, (5) The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface finish but, of course, it is strictly a bination of metal cutting and metal forming and is not to be remended as a practical cutting method. However, due to cutting tool wear, these conditions occasionally arise and lead to a marked change in the surface characteristics. Surface Finishing and Dimensional Control Products that have been pleted to their proper shape and size frequently require some type of surface finishing to enable than to satisfactorily fulfill their function. In some cases, tit is necessary to improve the physical properties of the surface material for resistance to peration or abrasion. In many manufacturing processes, the product surface is left with dirt, chips, grease, or other harmful material upon it. Assemblies that are made of different materials, or from the same materials processed 5 in different manners, many require some special surface treatment to provide uniformity of appearance. Surface finishing many sometimes bee an intermediate step processing. For instance, cleaning and polishing are usually essential before any kind of plating process. Some of the cleaning procedures are also used for improving surface smoothness on mating parts and for removing burrs and sharp corners, which might be harmful in later use. Another important need for surface finishing is for corrosion protection in a variety of environments. The type of protection procedure will depend largely upon the anticipated exposure, with due consideration to the material being protected and the economic factors involved. Satisfying the above objectives necessitates the use of main surfacefinishing methods that involve chemical change of the surface mechanical work affecting surface properties, cleaning by a variety of methods, and the application of protective coatings, anic and met