【正文】
另一方面,許多零部件的外形是由在所選的需要高精度的表面經(jīng)過大量的機械加工所形成的。一般來說,通過利用高價設備而又無需特種加工條件下,幾乎可以從任何種類原材料開始,借助機械加工把原材料加工成任意所要求 的結構現(xiàn)狀,只要外部尺寸足夠大,那都是可能的。 小批量的安裝成本。因此,公差就是在這兩種尺寸之間的距離。 單邊公差標注是一種只表現(xiàn)在標稱大小的單方向的尺寸標注制度,它允許在沒有嚴重影響配合的前提下來改變孔或軸的公差。上限尺寸與下限尺寸之間的大小就是公差。而這個變動的范圍是由要進行制造的零件所決定的。為了使零部件具有互換性,每個單個零件都必須做成可以與其配件能正確裝配。具有互換性的系統(tǒng)經(jīng)??梢詼p少其產(chǎn)品成本,因此,對于一種昂貴的,瑣細的加工工藝沒有必要存在。因此,裝配工也就成為了“ fitter”在字面上的意思了。這種保護程序很大程度上依賴于預期的暴露,考慮到材料將被保護和其所包含的經(jīng)濟因素。假設那是由不同種金屬材料,或是由同一種金屬材料在不同的加工方式中所造成的,大多數(shù)需要一些特殊的表面處理 技術來提供均勻的外表面。這樣能加工出良好的表面粗糙度,但是,當然,它嚴格來講,是一種金屬切削和金屬成型的 綜合,而不失被認為的一種實際的切削方法。然而,在連續(xù)切削時,產(chǎn)品是明顯的,除非逐步控制刀刃,否則他很有可能中級切削表面并在其上留下記號。這種現(xiàn)象就是知名的刀振,在軸向轉動被描述為在工件表面的長間距螺旋狀帶和段間距波動在機械加工的過渡表面。在切削加工延展性良好的金屬材料,如銅和鋁時,這 種情況就尤為突出。從垂直刀具進給的方向觀察,所得到的表面上有很多尖角,這些尖角的形狀與切削刀具的形狀相同。 然而 , 最大的成功被這些低級命令系統(tǒng)限制了 . 現(xiàn)代的控制理論的狀態(tài)變量接近供應統(tǒng)一和強大的方法表現(xiàn)任意的訂購的系統(tǒng) , 線的或非線性的 , 有時間改變或常數(shù)系數(shù) .它為形成計算機的執(zhí)行提供了理論,同時也對大多數(shù)優(yōu)化理論的進程負有責任 現(xiàn)代的控制理論是在控制領域的最近發(fā)展 . 因此 , 這個名字至少替換了一個描述性的標題 . 然而 , 現(xiàn)代的控制理論的基礎在其 它已知領域也被發(fā)現(xiàn)了 . 用一般化坐標和一般化瞬間表現(xiàn)一個系統(tǒng)時,在相關狀態(tài)變量上,其等同到接近哈密爾敦函數(shù)機械學 ,. 這接近的優(yōu)勢在古典的物理學已經(jīng)聞名了許多年 . 應用數(shù)學領域中,在處理各種形式相類似的方程時,利用母式的優(yōu)越性早已表現(xiàn)出來了,線性代數(shù)學也很大程度上歸功于現(xiàn)代的控制理論。這也意味著離散的 時間和數(shù)字的系統(tǒng)控制現(xiàn)在比在它過去更受人關注。老的圖畫似的方法不但沒有消失 , 并且還使其自動化了 .它們之所以能生存是因為提供了洞察力與直覺,許多不同的技術經(jīng)常能更適合于計算機。其中一項是有關數(shù)字化的超級計算機,較之這本書首印時期,現(xiàn)在能模擬,分析 ,控制的問題的大小和種類都要大得驚人。 在現(xiàn)代科 技高度發(fā)達的社會,存在一種非常雄心的目標的趨勢,這也意味著要處理有著很多相互關聯(lián)成分的復雜系統(tǒng),高精確度與高效率的需要改變了控制系統(tǒng)的執(zhí)行重點。 1 英文 原文 Introduction to Modern Control Theory Several factors provided the stimulus for the development of modern control theory: a. The necessary of dealing with more realistic models of system. b. The shift in emphasis towards optimal control and optimal system design. c. The continuing developments in digital puter technology. d. The shorting of previous approaches. e. Recognition of the applicability of wellknown methods in other fields of knowledge. The transition from simple approximate models, which are easy to work with, to more realistic models, produces two effects. First, a large number of variables must be included in the models. Second, a more realistic model is more likely to contain nonlinearities and timevarying parameters. Previously ignored aspects of the system, such as interactions with feedback through the environment, are more likely to be included. With an advancing technological society, there is a trend towards more ambitious goals. This also means dealing with plex system with a large number of interacting ponents. The need for greater accuracy and efficiency has changer the emphasis on control system performance. The classical specifications in terms of percent overshoot, setting time, bandwidth, etc. have in many cases given way to optimal criteria such as mini mum energy, minimum cost, and minimum time operation. Optimization of these criteria makes it even more difficult to avoid dealing with unpleasant nonlinearities. Optimal control theory often dictates that nonlinear timevarying control laws are used, even if the basic system is linear and timeinvariant. The continuing advances in puter technology have had three principal effects on the controls field. One of these relates to the gigantic superputers. The size and 2 the class of the problems that can now be modeled, analyzed, and controlled are considerably large than they were when the first edition of this book was written. The second impact of the puter technology has to so with the proliferation and wide availability of the microputers in homes and I the work place, classical control theory was dominated by graphical methods because at the time that was the only way to solve certain problems, Now every control designer has easy access to powerful puter packages for systems analysis and design. The old graphical methods have not yet disappeared, but have been automated. They survive because of the insight and intuition that they can