【摘要】?jī)山呛团c差的正弦公式【學(xué)習(xí)目標(biāo)】1、掌握兩角和與差的正弦公式及其推導(dǎo)方法。2、通過公式的推導(dǎo),了解它們的內(nèi)在聯(lián)系,培養(yǎng)邏輯推理能力。并運(yùn)用進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等變形。3、掌握誘導(dǎo)公式sin=cosα,sin=cosα,si
2024-12-02 01:05
【摘要】?jī)山呛团c差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦公式.2.會(huì)用兩角和與差的正、余弦公式進(jìn)行簡(jiǎn)單的三角函數(shù)的求值、化簡(jiǎn)、計(jì)算等.3.熟悉兩角和與差的正、余弦公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.學(xué)習(xí)重點(diǎn)
2024-12-17 06:46
【摘要】?jī)山呛团c差的正弦、余弦、正切公式學(xué)習(xí)目標(biāo):1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式.2.能利用兩角和與差的正切公式進(jìn)行化簡(jiǎn)、求值、證明.3.熟悉兩角和與差的正切公式的常見變形,并能靈活應(yīng)用.學(xué)習(xí)重點(diǎn):兩角和、差正切公式的推導(dǎo)過程及運(yùn)用學(xué)習(xí)難點(diǎn):兩角和與差正切公式的靈活運(yùn)用一.
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第3章《三角恒等變形》2兩角和與差的的正切函數(shù)導(dǎo)學(xué)案北師大版必修4【學(xué)習(xí)目標(biāo)】1.能根據(jù)兩角和與差的正弦、余弦公式得出兩角和與差的正切公式,提升轉(zhuǎn)化能力與分析問題的能力.2.能熟練應(yīng)用公式解決簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、
2024-12-01 20:36
【摘要】 兩角差的余弦公式 考試標(biāo)準(zhǔn) 課標(biāo)要點(diǎn) 學(xué)考要求 高考要求 兩角差的余弦公式 b b 兩角差的正弦公式及兩角和的正弦、余弦公式 c c 兩角和與差的正切公式 ...
2025-04-03 04:26
【摘要】?jī)山呛团c差的正弦、余弦、正切公式重點(diǎn):公式的應(yīng)用.難點(diǎn):公式的推導(dǎo)及變形應(yīng)用.六個(gè)公式的特征兩角和(差)的余弦:余余、正正、符號(hào)異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號(hào)與左邊相反);兩角和(差)的正弦:正余、余正、符號(hào)同;兩角和(差)的正切:分子同、分母異.它們的內(nèi)在聯(lián)系如下:一、和(差)角的余弦公式
【摘要】§兩角和與差的正弦、正切和余切【學(xué)習(xí)目標(biāo)、細(xì)解考綱】、余弦、正切公式,會(huì)初步運(yùn)用公式求一些角的三角函數(shù)值;角和與差的三角函數(shù)公式的探究過程,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力;【知識(shí)梳理、雙基再現(xiàn)】1、在一般情況下sin(α+β)≠sinα+sinβ,cos(α+β)≠cosα+cosβ
2024-12-12 13:51
【摘要】?jī)山呛团c差的正弦、余弦、正切公式1.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos62°sin28°=sin(62°+
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)兩角和與差的正弦、余弦、正切公式(一)課時(shí)跟蹤檢測(cè)新人教A版必修4知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難三角函數(shù)式的化簡(jiǎn)求值1、510條件求值問題46、7、8綜合問題2、39、11121.若sin(α+β)cosβ-cos(α
2024-12-21 03:40
【摘要】?jī)山呛团c差的正弦、余弦、正切公式一、和角與差角公式應(yīng)用的規(guī)律兩角和與差的正、余弦公式主要用于求值、化簡(jiǎn)、證明等三角變換,常見的規(guī)律如下:①配角的方法:通過對(duì)角的“合成”與“分解”,尋找欲求角與已知角的內(nèi)在聯(lián)系,靈活應(yīng)用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用與變形公式的活用
【摘要】?jī)山呛筒畹恼泄絾栴}探討).tan(???首先推導(dǎo))cos()sin()tan(??????????????????sinsincoscossincoscossin???(這里有什么要求?)????????????????coscos
2024-11-21 03:52
【摘要】課題兩角和與差的正弦、余弦、正切公式(二)教學(xué)目標(biāo)知識(shí)與技能理解以兩角差的余弦公式為基礎(chǔ)過程與方法推導(dǎo)兩角和、差正弦和正切公式的方法情感態(tài)度價(jià)值觀體會(huì)三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用重點(diǎn)兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用難點(diǎn)兩角和與差正弦、余弦和正切公式的
【摘要】課題兩角和與差的正弦、余弦、正切公式(一)教學(xué)目標(biāo)知識(shí)與技能理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法過程與方法體會(huì)三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用情感態(tài)度價(jià)值觀聯(lián)想觀察分析靈活運(yùn)用公式重點(diǎn)兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用難點(diǎn)兩角和與差正弦
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導(dǎo)出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進(jìn)行化簡(jiǎn)求值.(重點(diǎn))2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號(hào)規(guī)律.(易混點(diǎn))3.能正用、逆用、變形用公式進(jìn)行化簡(jiǎn)求值.
2024-12-16 18:51
【摘要】課題:兩角和與差的正弦班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】(差)角公式推導(dǎo)出正弦和(差)角公式;(差)角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn),求值。【課前預(yù)習(xí)】1、余弦的和差角公式:??)cos(??;??)co
2024-12-01 21:43