freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

一元二次方程數(shù)學(xué)教學(xué)教案-文庫吧資料

2024-12-06 01:59本頁面
  

【正文】 將繩子折成三等份,一份繩長(zhǎng)比井深多5尺。若將繩三折測(cè)之,繩多五尺。  雞足有2x只?! ‰y點(diǎn):  確立等量關(guān)系,列出正確的二元一次方程組。重點(diǎn):  經(jīng)歷和體驗(yàn)列方程組解決實(shí)際問題的過程。  情感態(tài)度與價(jià)值觀目標(biāo):  ,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動(dòng)、主動(dòng)與他人合作交流的意識(shí).  ”雞兔同籠”,把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會(huì)到數(shù)學(xué)中的”趣”?! ∨囵B(yǎng)學(xué)生列方程組解決實(shí)際問題的意識(shí),增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用能力。(3)(  p2p  ).22  問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程于一元一次方程有什么不同?二次如  何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?二、探索新知  4  上面我們已經(jīng)講了x=9,根據(jù)平方根的意義,直接開平方得x=〒3,如果x換元為2t+1,即(2t+1)=9,能否也用直接開平方的方法求解呢?(學(xué)生分組討論)  老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=〒3即2t+1=3,2t+1=3  方程的兩根為t1=1,t2=2  222  例1:解方程:(1)(2x1)=5(2)x+6x+9=2(3)x2x+4=1  22  分析:很清楚,x+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)=1.  2  解:(2)由已知,得:(x+3)=2直接開平方,得:x+3=  即  所以,方程的兩根x1  x2  2  ,:設(shè)每年人均住房面積增長(zhǎng)率為x.?一年后人均住房面積就應(yīng)該是10+?10x=10(1+x)。(3)x+px+_____=(x+____).問題1:根據(jù)完全平方公式可得:(1)164。領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想.  22  :通過根據(jù)平方根的意義解形如x=n,知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)=n(n≥0)  一、復(fù)習(xí)引入  學(xué)生活動(dòng):  222222  (1)x8x+______=(x______)。  (3)要會(huì)用一些方法求一元二次方程的根.(“夾逼”方法。但是,問題2中的x=,由實(shí)際問題列出方程并解得的根,并不一定是實(shí)際問題的根,還要考慮這些根是否確實(shí)是實(shí)際問題的解.  2  +10x+12=0的根?4,3,2,1,0,1,2,3,4.  分析:要判定一個(gè)數(shù)是否是方程的根,只要把其代入等式,使等式兩邊相等即可.  2  解:將上面的這些數(shù)代入后,只有2和3滿足方程的等式,所以x=2或x=3是一元二次方程2x+10x+12=0的兩根.  2  =1是關(guān)于x的一元二次方程ax+bx+c=0(a≠0)的一個(gè)根,求代數(shù)式2007(a+b+c)的值  22  練習(xí):關(guān)于x的一元二次方程(a1)x+x+a1=0的一個(gè)根為0,則求a的值  點(diǎn)撥:如果一個(gè)數(shù)是方程的根,那么把該數(shù)代入方程,一定能使左右兩邊相等,這種解決問題的思維方法經(jīng)常用到,同學(xué)們要深刻理解.  ?  222  (1)x64=0(2)3x6=0(3)x3x=0  分析:要求出方程的根,就是要求出滿足等式的數(shù),:略  三、鞏固練習(xí)  教材思考題練習(xí)2.  四、歸納小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng))本節(jié)課應(yīng)掌握:  (1)一元二次方程根的概念?! 。号卸ㄒ粋€(gè)數(shù)是否是方程的根?! ?.?  了解一元二次方程根的概念,根據(jù)問題列出方程,化為一元二次方程的一般形式,列式求解。常數(shù)項(xiàng).  22  分析:通過完全平方公式和平方差公式把(x+1)+(x2)(x+2)=1化成ax+bx+c=0(a≠0):略  三、鞏固練習(xí)  教材練習(xí)2  補(bǔ)充練習(xí):判斷下列方程是否為一元二次方程?  (1)3x+2=5y3(2)x=4(3)3x2  2  22  5222  =0(4)x4=(x+2)(5)ax+bx+c=0x  四、應(yīng)用拓展  22 ?。宏P(guān)于x的方程(m8m+17)x+2mx+1=0,不論m取何值,該方程都是一元二次方程.  2  分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m8m+17?≠0即可.  22  證明:m8m+17=(m4)+1  2  ∵(m4)≥0  22  ∴(m4)+10,即(m4)+1≠0  ∴不論m取何值,該方程都是一元二次方程.  2  ?練習(xí):(2a—4)x—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為  一元一次方程?  /4m/4  ,方程(m+1)x+27mx+5=0是關(guān)于的一元二次方程五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))本節(jié)課要掌握:  2  (1)一元二次方程的概念。c是常數(shù)項(xiàng).  (x1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).  2  分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x1)=5(x+2)必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)等.  解:略  注意:二次項(xiàng)、二次項(xiàng)系數(shù)、一次項(xiàng)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都包括前面的符號(hào).  2  例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)將方程(x+1)+(x
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1