【摘要】雙基達標?限時20分鐘?1.下列命題正確的是().A.定義在(a,b)上的函數(shù)f(x),若存在x1<x2時,有f(x1)<f(x2),那么f(x)在(a,b)上為增函數(shù)B.定義在(a,b)上的函數(shù)f(x),若有無窮多對x1,x2∈(a,b)使得x1<x2時,有f(x1)<f(x2),那么
2024-12-16 07:00
【摘要】雙基達標?限時20分鐘?1.函數(shù)f(x)=x3+3x的奇偶性為().A.奇函數(shù)B.偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)解析定義域為R,且f(-x)=-x3-3x=-f(x),∴為奇函數(shù).答案A2.已知定義在R上的偶函數(shù)f(x)在x>0上是增函
2024-12-17 03:38
【摘要】雙基達標?限時20分鐘?1.下列對象不能構(gòu)成集合的是().①我國近代著名的數(shù)學家②聯(lián)合國常任理事國③空氣中密度大的氣體A.①②B.②③C.①②③D.①③解析①中的著名沒有明確的界限;③中“密度大”的程度沒有明確的界限,故選D.答案D
【摘要】冪函數(shù)教學目標:了解冪函數(shù)的概念教學重點:了解冪函數(shù)的概念教學過程:1、概念:形如?xy?(R??),的函數(shù)叫做冪函數(shù)2、本節(jié)課只研究?為有理數(shù)的情形圖1令nm??,其中Znm?,且1),(?nm,就1??,10???,0?
2024-12-17 03:37
【摘要】雙基達標?限時20分鐘?1.下列命題:①空集沒有子集;②任何集合至少有兩個子集;③空集是任何集合的真子集;④若?A時,則A≠?.其中正確的個數(shù)是().A.0B.1C.2D.3解析①空集的子集是空集;②空集只有一個子集;③必須是非空集合;
2024-12-16 05:50
【摘要】雙基達標?限時20分鐘?1.集合{x∈N|x-3<2}的另一種表示方法是().A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}解析由x-3<2得x<5且x∈N,∴x可取0,1,2,3,4.答案A2
【摘要】雙基達標?限時20分鐘?1.設(shè)全集U={1,2,3,4,5},A={1,3,5},B={2,5},則A∩(?UB)等于().A.{2}B.{2,3}C.{3}D.{1,3}解析?UB={1,3,4},∴A∩{1,3,4}={1,3}.答案D2.已知A、B均為集合U=
【摘要】函數(shù)的應用教學設(shè)計教學目標::能夠運用指數(shù)函數(shù),對數(shù)函數(shù)、冪函數(shù)的性質(zhì)解決某些簡單的實際問題.(1)能通過閱讀理解讀懂題目中文字敘述所反映的實際背景,領(lǐng)悟其中的數(shù)學道理,弄清題中出現(xiàn)的量及其數(shù)學含義.(2)能根據(jù)實際問題的具體背景,進行數(shù)學化設(shè)計,將實際問題轉(zhuǎn)化為數(shù)學問題(即建立數(shù)學模型),并運用函數(shù)的相關(guān)性質(zhì)解決問題.(
【摘要】雙基達標?限時20分鐘?1.在b=log(a-2)(5-a)中,實數(shù)a的取值范圍是().A.a(chǎn)5或a0a-20且a-2≠1
【摘要】雙基達標?限時20分鐘?1.函數(shù)f(x)=-x2+2x-3在閉區(qū)間[0,3]上的最大值、最小值分別為().A.0,-2B.-2,-6C.-2,-3D.-3,-6解析∵f(x)=-(x-1)2-2,∴當x=1時有最大值-2,當x=3時有最小值-6.答案B
【摘要】雙基達標?限時20分鐘?1.已知a0,m、n∈Q,下列各式中正確的是().答案D2.計算?2n+1?2·?12?2n+14n·8-2(n∈N*)的結(jié)果為().解析原式=22n+2·2-2n-122n·2-6=
【摘要】函數(shù)的應用(Ⅱ)(2)教學目標:了解指數(shù)函數(shù),對數(shù)函數(shù)等函數(shù)模型的應用教學重點:了解指數(shù)函數(shù),對數(shù)函數(shù)等函數(shù)模型的應用教學過程:1.某商店賣A、B兩種價格不同的商品,由于商品A連續(xù)兩次提價20%,同時商品B連續(xù)兩次降價20%,結(jié)果都以每件元售出,若商店同時售出這兩種商品各一件,則與價格不升、不降的情況相比較,商
【摘要】教學目標:理解函數(shù)的單調(diào)性教學重點:函數(shù)單調(diào)性的概念和判定教學過程:1、過對函數(shù)xy2?、xy3??、xy1?及2xy?的觀察提出有關(guān)函數(shù)單調(diào)性的問題.2、閱讀教材明確單調(diào)遞增、單調(diào)遞減和單調(diào)區(qū)間的概念3、例1、如圖是定義在閉區(qū)間[-5,5]上的函數(shù))(xfy?的圖象,根據(jù)圖象說出
【摘要】雙基達標?限時20分鐘?1.已知log23=a,log25=b,則log295等于().A.a(chǎn)2-bB.2a-b2bD.2ab解析log295=log29-log25=2log23-log25=2a-b.答案B2.已知2x=3,log483=y(tǒng)
【摘要】對數(shù)函數(shù)(一)教學目標:掌握對數(shù)函數(shù)的定義、圖象和性質(zhì),會運用對數(shù)函數(shù)的定義域求函數(shù)的定義域,會利用單調(diào)性比較兩個對數(shù)的大小.教學重點:掌握對數(shù)函數(shù)的定義、圖象和性質(zhì).教學過程:1、習對數(shù)的概念2、分析對數(shù)函數(shù)的定義探究對數(shù)函數(shù)的圖象、性質(zhì).函數(shù)y=logax(a1)y
2024-12-16 06:59