【摘要】雙基達標?限時20分鐘?1.設全集U={1,2,3,4,5},A={1,3,5},B={2,5},則A∩(?UB)等于().A.{2}B.{2,3}C.{3}D.{1,3}解析?UB={1,3,4},∴A∩{1,3,4}={1,3}.答案D2.已知A、B均為集合U=
2024-12-17 03:38
【摘要】雙基達標?限時20分鐘?1.與函數(shù)y=-2x3為同一函數(shù)的是().A.y=x-2xB.y=-x-2xC.-2x3D.y=x2-2x解析函數(shù)y=-2x3的定義域為(-∞,0],則化簡為-2x3=-x-2x.答案B2.函數(shù)f(x)=(x-
2024-12-16 07:00
【摘要】人教A版必修一·新課標·數(shù)學人教A版必修一·新課標·數(shù)學本章概覽一、內(nèi)容概述1.通過本章學習,要了解指數(shù)函數(shù)、對數(shù)函數(shù)的實際背景,理解指數(shù)函數(shù)、對數(shù)函數(shù)的概念,理解五種冪函數(shù),會運用它們解決一些實際問題.2.理
2025-07-28 23:04
【摘要】雙基達標?限時20分鐘?1.下列對象不能構成集合的是().①我國近代著名的數(shù)學家②聯(lián)合國常任理事國③空氣中密度大的氣體A.①②B.②③C.①②③D.①③解析①中的著名沒有明確的界限;③中“密度大”的程度沒有明確的界限,故選D.答案D
【摘要】對數(shù)及其運算(一)教學目標:理解對數(shù)的概念、常用對數(shù)的概念,通過閱讀材料,了解對數(shù)的發(fā)展歷史及其對簡化運算的作用教學重點:理解對數(shù)的概念、常用對數(shù)的概念.教學過程:1、對數(shù)的概念:復習已經(jīng)學習過的運算指出:加法、減法,乘法、除法均為互逆運算,指數(shù)運算與對數(shù)運算也為互逆運算:若,則叫做以為底的對數(shù)。記
2024-12-16 20:17
【摘要】對數(shù)及其運算(一)教學目標:理解對數(shù)的概念、常用對數(shù)的概念,通過閱讀材料,了解對數(shù)的發(fā)展歷史及其對簡化運算的作用教學重點:理解對數(shù)的概念、常用對數(shù)的概念.教學過程:1、對數(shù)的概念:復習已經(jīng)學習過的運算指出:加法、減法,乘法、除法均為互逆運算,指數(shù)運算與對數(shù)運算也為互逆運算:若,則叫做以為底的對數(shù)。
【摘要】雙基達標?限時20分鐘?1.下列命題:①空集沒有子集;②任何集合至少有兩個子集;③空集是任何集合的真子集;④若?A時,則A≠?.其中正確的個數(shù)是().A.0B.1C.2D.3解析①空集的子集是空集;②空集只有一個子集;③必須是非空集合;
2024-12-16 05:50
【摘要】雙基達標?限時20分鐘?1.集合{x∈N|x-3<2}的另一種表示方法是().A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}解析由x-3<2得x<5且x∈N,∴x可取0,1,2,3,4.答案A2
【摘要】雙基達標?限時20分鐘?1.下列命題正確的是().A.定義在(a,b)上的函數(shù)f(x),若存在x1<x2時,有f(x1)<f(x2),那么f(x)在(a,b)上為增函數(shù)B.定義在(a,b)上的函數(shù)f(x),若有無窮多對x1,x2∈(a,b)使得x1<x2時,有f(x1)<f(x2),那么
【摘要】對數(shù)及其運算(二)教學目標:理解對數(shù)的運算性質,掌握對數(shù)的運算法則教學重點:掌握對數(shù)的運算法則教學過程:1、復習:(1)、對數(shù)的概念,(2)、對數(shù)的性質,(3)、對數(shù)恒等式2、推導對數(shù)運算法則:NMMNaaalogloglog??NMNMaaalogloglog??
【摘要】對數(shù)及其運算(三)教學目標:掌握對數(shù)的換底公式教學重點:掌握對數(shù)的換底公式教學過程:1、首先可以通過實例研究當一個對數(shù)式的底數(shù)改變時,整個對數(shù)式會發(fā)生什么變化?如求設,寫成指數(shù)式是,取以為底的對數(shù)得即.在這個等式中,底數(shù)3變成后對數(shù)式將變成等式右邊的式子.一般地關
【摘要】對數(shù)及其運算(三)教學目標:掌握對數(shù)的換底公式教學重點:掌握對數(shù)的換底公式教學過程:1、首先可以通過實例研究當一個對數(shù)式的底數(shù)改變時,整個對數(shù)式會發(fā)生什么變化?如求設,寫成指數(shù)式是,取以為底的對數(shù)得即.在這個等式中,底數(shù)3變成后對數(shù)式將變成等式右邊的式子.一般地
【摘要】指數(shù)與指數(shù)函數(shù)自學提綱1冪,底數(shù),指數(shù)的形式2整數(shù)指數(shù)冪的概念及運算3分數(shù)指數(shù)冪的概念及運算4無理指數(shù)冪的概念及運算naanan(n個a相乘)叫做的次冪,叫做冪的底數(shù),叫做冪的指數(shù)532352335252
2024-11-25 12:00
【摘要】集合的運算(一)教學目標:理解兩個集合的交集的含義,會求兩個集合的交集教學重、難點:會求兩個集合的交集教學過程:(一)復習集合的概念、子集的概念、集合相等的概念。(二)講述新課一、1、觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關系?2、考察集合
【摘要】雙基達標?限時20分鐘?1.函數(shù)f(x)=x3+3x的奇偶性為().A.奇函數(shù)B.偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)解析定義域為R,且f(-x)=-x3-3x=-f(x),∴為奇函數(shù).答案A2.已知定義在R上的偶函數(shù)f(x)在x>0上是增函