【摘要】基本不等式的證明(2)教學目標:一、知識與技能1.進一步掌握基本不等式;2.學會推導并掌握均值不等式定理;3.會運用基本不等式求某些函數(shù)的最值,求最值時注意一正二定三等四同.4.使學生能夠運用均值不等式定理來研究函數(shù)的最大值和最小值問題;基本不等式在證明題和求最值方面的應用.二、過程與方法通過幾
2024-11-28 01:04
【摘要】第2課時基本不等式的應用1.復習鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關的實際應用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應用了圖形間的面積關系推導出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-26 08:10
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-12 16:33
【摘要】基本不等式的證明課時目標;.1.如果a,b∈R,那么a2+b2____2ab(當且僅當______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當且僅當a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術平均數(shù),
2024-12-13 10:13
【摘要】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-16 20:20
【摘要】均值不等式的綜合應用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應用:11,lglg,(lglg),2lg(
2024-11-26 08:48
【摘要】3.基本不等式的證明學習目標預習導學典例精析欄目鏈接情景導入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點C,使AC=a,CB=b,過點C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-25 19:03
【摘要】課題:基本不等式(1)班級:姓名:學號:第學習小組【學習目標】理解算術平均數(shù)與幾何平均數(shù)的定義及它們的關系.探究并了解基本不等式的證明過程,會用各種方法證明基本不等式.理解基本不等式的意義,并掌握基本不等式中取等號的條件是:當且僅當這兩個數(shù)相等.【課前預習】1.當
【摘要】課題:基本不等式的證明(2)班級:姓名:學號:第學習小組【學習目標】運用基本不等式求解函數(shù)最值問題.【課前預習】1.當0??ab時,比較baabbaabbaab???????????????22222,,,,,的大小.(運用基本不等式及比較法)
【摘要】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應用中的最值問題通常轉化為y=ax+bx
2024-08-05 17:21
【摘要】課題:不等式專題復習班級:姓名:學號:第學習小組【學習目標】會運用基本不等式解決一些問題.【課前預習】1、(1)函數(shù)2231xxy???的定義域為_________________;(2)比較大?。?22?____________
【摘要】專題基本不等式編者:高成龍專題基本不等式【一】基礎知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當且僅當時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2024-08-18 19:27
【摘要】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
【摘要】高中數(shù)學必修五基本不等式題型(精編)變2.下列結論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關系正確的是例2、解下列不等式(1)
2025-04-10 05:12