【總結(jié)】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48
【總結(jié)】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
【總結(jié)】第5課時(shí)基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開(kāi)的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客.在正方形ABCD中有4個(gè)全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【總結(jié)】第一篇:高中數(shù)學(xué)基本不等式及其應(yīng)用教案 基本不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))和a3+b3+c3≥3abc(a、...
2024-10-29 06:13
【總結(jié)】第11課時(shí):§基本不等式的證明(2)【三維目標(biāo)】:一、知識(shí)與技能;;,求最值時(shí)注意一正二定三相等。;基本不等式在證明題和求最值方面的應(yīng)用。二、過(guò)程與方法通過(guò)幾個(gè)例題的研究,進(jìn)一步掌握基本不等式2abab??,并會(huì)用此定理求某些函數(shù)的最大、最小值。三、情感、
2024-11-20 00:26
【總結(jié)】第7課時(shí)基本不等式的實(shí)際應(yīng)用,并會(huì)用基本不等式來(lái)解題..今天我們來(lái)探究基本不等式在實(shí)際生活中的應(yīng)用,我們先來(lái)看個(gè)實(shí)際例子:如圖,有一張單欄的豎向張貼的海報(bào),它的印刷面積為72dm2(圖中陰影部分),上下空白各2dm,左右空白各1dm,則四周空白部分面積的最小值是dm2.問(wèn)題1
2024-11-18 08:09
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類(lèi)討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類(lèi)方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類(lèi),即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類(lèi)討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-04 05:10
【總結(jié)】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過(guò)程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(1)公式中a,b的取值是
2024-11-17 19:03
【總結(jié)】第5課時(shí)基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義.(小)值.“一正二定三相等”.問(wèn)題1上述情境中,正方形的面積為,4個(gè)直角三角形的面積的和,由于4個(gè)直角三角形的面積之和不大于正方形的面積,于是就可以得到一個(gè)不等式:,我們稱(chēng)之為重要不等
2024-11-17 23:14
【總結(jié)】不等式復(fù)習(xí)學(xué)案班級(jí)學(xué)號(hào)姓名【課前預(yù)習(xí)】x的不等式2240mxx???的解集為??12xx???,則實(shí)數(shù)m的值為.2.設(shè)集合??2340,AxxxxR?
2024-11-20 01:07
【總結(jié)】不等式的證明方法教學(xué)目標(biāo)知識(shí)與技能:比較法,綜合法,分析法:反證法,換元法,放縮法[過(guò)程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)初步學(xué)會(huì)不等式證明的三種常用方法:比較法,綜合法,分析法教學(xué)
2024-11-20 00:30
【總結(jié)】基本不等式的證明1教學(xué)目標(biāo)知識(shí)與技能.,會(huì)用多種方法證明基本不等式.,并掌握基本不等式中取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等[過(guò)程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)
2024-12-05 09:29
【總結(jié)】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識(shí)的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問(wèn)題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會(huì)。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問(wèn)激疑,創(chuàng)設(shè)情景展示北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過(guò)三個(gè)問(wèn)題
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時(shí),主要內(nèi)容是探索基本不等式的生成和證明過(guò)程及其簡(jiǎn)單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點(diǎn),它與線性規(guī)劃呈并列結(jié)構(gòu),可用來(lái)求某些函數(shù)的值域和最值,也可解決實(shí)際生活中的最優(yōu)化配置問(wèn)題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03