【摘要】正弦定理(二)課時(shí)目標(biāo);證明.1.正弦定理:asinA=bsinB=csinC=2R的常見(jiàn)變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=______;(3)a=________
2024-12-13 10:14
【摘要】第二章解三角形知識(shí)點(diǎn)新課程標(biāo)準(zhǔn)的要求層次要求領(lǐng)域目標(biāo)要求正弦定理和余弦定理,掌握正弦定理、余弦定理、余弦定理的變形公式習(xí),體驗(yàn)數(shù)學(xué)探究活動(dòng)的過(guò)程,培養(yǎng)探索精神和創(chuàng)新意識(shí)“應(yīng)用舉例”,提高應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力和實(shí)際操作的能力,進(jìn)一步體會(huì)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值,進(jìn)
2024-11-26 08:09
【摘要】第二章解三角形課標(biāo)要求:本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)
2024-11-27 08:01
【摘要】第一章數(shù)列數(shù)列的概念課時(shí)目標(biāo);,并會(huì)用通項(xiàng)公式寫出數(shù)列的任意一項(xiàng);,會(huì)根據(jù)其前n項(xiàng)寫出它的通項(xiàng)公式.1.一般地,按一定________排列的一列數(shù)叫作數(shù)列,數(shù)列中的每一個(gè)數(shù)叫作這個(gè)數(shù)列的項(xiàng).?dāng)?shù)列一般形式可以寫成a1,a2,a3,?,an,?簡(jiǎn)記為數(shù)列{an},其中數(shù)列的第1項(xiàng)a1也稱首項(xiàng)
2024-12-13 06:35
【摘要】等差數(shù)列(二)課時(shí)目標(biāo)..1.等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d,當(dāng)d=0時(shí),an是關(guān)于n的常函數(shù);當(dāng)d≠0時(shí),an是關(guān)于n的一次函數(shù);點(diǎn)(n,an)分布在以____為斜率的直線上,是這條直線上的一列孤立的點(diǎn).2.已知在公差為d的等差數(shù)列{an}中的第m項(xiàng)am和第n項(xiàng)a
2024-12-13 01:50
【摘要】等比數(shù)列(二)課時(shí)目標(biāo).,能用性質(zhì)靈活解決問(wèn)題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有________________,特別地,當(dāng)m+n=2k時(shí),am·an=________.2.在等比數(shù)列{an}中,每隔k項(xiàng)(k∈N+)取出一項(xiàng),按
2024-12-13 01:49
【摘要】第3課時(shí)正弦定理、余弦定理的綜合應(yīng)用、余弦定理的內(nèi)容.,選擇恰當(dāng)?shù)墓浇馊切?,進(jìn)一步理解正弦定理、余弦定理的作用.2021年,敘利亞內(nèi)戰(zhàn)期間,為了準(zhǔn)確分析戰(zhàn)場(chǎng)形式,美軍派出偵查分隊(duì)由分別位于敘利亞的兩處地點(diǎn)C和D進(jìn)行觀測(cè),測(cè)得敘利亞的兩支精銳部隊(duì)分別位于A和B處,美軍測(cè)得的數(shù)據(jù)包
2024-12-16 02:37
【摘要】數(shù)列的函數(shù)特性課時(shí)目標(biāo),明確遞推公式與通項(xiàng)公式的異同;的遞推公式寫出數(shù)列的前幾項(xiàng);,能用函數(shù)的觀點(diǎn)研究數(shù)列.1.如果數(shù)列{an}的第1項(xiàng)或前幾項(xiàng)已知,并且數(shù)列{an}的任一項(xiàng)an與它的前一項(xiàng)an-1(或前幾項(xiàng))間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)式子就叫做這個(gè)數(shù)列的遞推公式.2.?dāng)?shù)列可以看作是一
2024-12-13 06:39
【摘要】第一篇:高中數(shù)學(xué)§1正弦定理與余弦定理()教案北師大版必修5 §1正弦定理、余弦定理 教學(xué)目的: ⑴使學(xué)生掌握正弦定理教學(xué)重點(diǎn):正弦定理 教學(xué)難點(diǎn):正弦定理的正確理解和熟練運(yùn)用 授課類型:新...
2024-11-06 22:00
【摘要】正弦定理、余弦定理的應(yīng)用(二)課時(shí)目標(biāo)、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)高度的問(wèn)題.、余弦定理及三角形面積公式解決三角形中的幾何度量問(wèn)題.1.仰角和俯角:與目標(biāo)視線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平線____方時(shí)叫仰角,目標(biāo)視線在水平線____方時(shí)叫俯角.(如圖所示)2.已知△ABC的兩邊a
【摘要】§5平行關(guān)系平行關(guān)系的判定問(wèn)題引航?它的作用是什么??它的作用是什么?直線與平面、平面與平面平行的判定定理文字語(yǔ)言符號(hào)語(yǔ)言圖形語(yǔ)言直線與平面平行若_______一條直線與_________的一條直線_____,則該直線與此平面平行?l∥α平面外
2025-01-19 21:00
【摘要】等比數(shù)列(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡(jiǎn)單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問(wèn)題.1.如果一個(gè)數(shù)列從第______項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的______都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的______,通常用字母____表示
【摘要】簡(jiǎn)單線性規(guī)劃課時(shí)目標(biāo)..線性規(guī)劃中的基本概念名稱意義約束條件由變量x,y組成的不等式或方程線性約束條件由x,y的一次不等式(或方程)組成的不等式組目標(biāo)函數(shù)欲求最大值或最小值所涉及的變量x,y的函數(shù)解析式線性目標(biāo)函數(shù)關(guān)于x,y的一次解析式可行解滿足_________
【摘要】等差數(shù)列(一)課時(shí)目標(biāo)..1.如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做________數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的________,公差通常用字母d表示.2.若三個(gè)數(shù)a,A,b構(gòu)成等差數(shù)列,則A叫做a與b的__________,并且A=________
2024-12-12 23:43
【摘要】基本不等式課時(shí)目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時(shí)取“=”號(hào)).2.若a,b都為_(kāi)___數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時(shí),等號(hào)成立),稱上述不等式為_(kāi)_____不等式,其中________稱為a,b的算術(shù)平均數(shù),___
2024-12-13 06:37