freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)必修1--函數(shù)單調(diào)性教學(xué)心得-文庫(kù)吧資料

2024-10-11 20:25本頁(yè)面
  

【正文】 比較函數(shù)值的大小,從而得到正確的回答: 任意取在,有為增函數(shù). ,即,所以這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點(diǎn):(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小。例如,指出回答②試圖用自然數(shù)列來驗(yàn)證結(jié)論,而且引入了不等式表示不等關(guān)系,但是,只是對(duì)有限幾個(gè)自然數(shù)驗(yàn)證不行,只有當(dāng)所有的比較結(jié)果都是一樣的:自變量大時(shí),函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學(xué)生提出:引入非負(fù)實(shí)數(shù)a,只要證明就可以了,這就把驗(yàn)證的范圍由有限擴(kuò)大到了無限。在教學(xué)中,教師可以組織學(xué)生先分組探究,然后全班交流,相互補(bǔ)充,并及時(shí)對(duì)學(xué)生的發(fā)言進(jìn)行反饋、評(píng)價(jià),對(duì)普遍出現(xiàn)的問題組織學(xué)生討論,學(xué)生錯(cuò)誤的回答主要有兩種:①在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)楹瘮?shù). ,所以在上為增②可以用0,1,2,3,4,5驗(yàn)證: 在所以函數(shù)上是增函數(shù)。在初中數(shù)學(xué)中,除了學(xué)習(xí)函數(shù)的初級(jí)概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時(shí),接觸到一點(diǎn)動(dòng)態(tài)數(shù)學(xué)對(duì)象的數(shù)學(xué)符號(hào)表示以外,絕大多數(shù)都是用數(shù)學(xué)符號(hào)表示靜態(tài)的數(shù)學(xué)對(duì)象。(2)“‘隨著’x增大,函數(shù)f(x)‘也’增大”,如何用符號(hào)表示。后一過程的進(jìn)行則有相當(dāng)?shù)碾y度,其難就難在用數(shù)學(xué)的符合語言來描述函數(shù)單調(diào)性的定義時(shí),如何才能最大限度地通過學(xué)生自己的思維活動(dòng)來完成。長(zhǎng)此以往,便可使學(xué)生在學(xué)習(xí)知識(shí)的同時(shí),學(xué)到比知識(shí)更重要的東西—學(xué)會(huì)如何思考?如何進(jìn)行數(shù)學(xué)的思考?一般說,對(duì)函數(shù)單調(diào)性的建構(gòu)有兩個(gè)重要過程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過思維構(gòu)造把這個(gè)意義用數(shù)學(xué)的形式化語言加以描述。恰當(dāng)運(yùn)用圖形語言、自然語言和符號(hào)化的形式語言,并進(jìn)行三者之間必要的轉(zhuǎn)化,可以說,這是學(xué)習(xí)數(shù)學(xué)的基本思考方式。其實(shí),數(shù)學(xué)概念就是一系列常識(shí)不斷精微化的結(jié)果,之所以要進(jìn)一步形式化,完全是數(shù)學(xué)精確性、嚴(yán)密性的要求,因?yàn)橹挥羞_(dá)到這種符號(hào)化、形式化的程度,才可以進(jìn)行準(zhǔn)確的計(jì)算,進(jìn)行推理論證。學(xué)生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對(duì)函數(shù)的增減性已有初步的認(rèn)識(shí):隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。讓學(xué)生分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時(shí),函在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個(gè)圖象從左向右逐漸上升,y隨x的增大而增大;第二個(gè)圖象從左向右逐漸下降,對(duì)于自變量變化時(shí),函數(shù)值具有這兩種變化規(guī)律的函數(shù),通過討論使學(xué)生明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的.在此基礎(chǔ)上,教師引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義: 如果函數(shù)在某個(gè)區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù).關(guān)鍵點(diǎn)2。第四階段,認(rèn)識(shí)提升階段(高中選修系列2),要求學(xué)生能初步認(rèn)識(shí)導(dǎo)數(shù)與單調(diào)性的聯(lián)系。第二階段,形象描述階段(初中階段),能用抽象的語言描述一個(gè)量隨另一個(gè)量變化的趨勢(shì),如“y隨著x的增大而減少”。至于在多種函數(shù)性質(zhì)中,選擇這個(gè)時(shí)機(jī)來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因?yàn)楹瘮?shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì)。對(duì)各種函數(shù)模型而言,就是研究它們所描述的運(yùn)動(dòng)關(guān)系的變化規(guī)律,也就是這些運(yùn)動(dòng)關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。接踵而來的任務(wù)是對(duì)函數(shù)應(yīng)該繼續(xù)研究什么。學(xué)生 學(xué)習(xí)函數(shù)單調(diào)性的認(rèn)知基礎(chǔ)是什么?在這個(gè)內(nèi)容之前,已經(jīng)教學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡(jiǎn)單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。最近,在我區(qū)“青年教師評(píng)優(yōu)課”上,聽了多名教師對(duì)這節(jié)課不同風(fēng)格的課堂教學(xué),通過對(duì)他們教學(xué)案例的研究和思考,筆者認(rèn)為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個(gè)關(guān)鍵點(diǎn)。第五篇:函數(shù)單調(diào)性函數(shù)單調(diào)性概念教學(xué)的三個(gè)關(guān)鍵點(diǎn) ──兼談《函數(shù)單調(diào)性》的教學(xué)設(shè)計(jì)北京教育學(xué)院宣武分院 彭 林函數(shù)單調(diào)性是學(xué)生進(jìn)入高中后較早接觸到的一個(gè)完全形式化的抽象定義,對(duì)于仍然處于經(jīng)驗(yàn)型邏輯思維發(fā)展階段的高一學(xué)生來講,有較大的學(xué)習(xí)難度。但還存在了很多的問題,比如最大的問題就是學(xué)生探究還沒有放開,教師也講多了。進(jìn)一步,通過分析函數(shù)圖像的變化趨勢(shì),啟發(fā)學(xué)生歸納總結(jié)出、增、減函數(shù)中函數(shù)值與自變量之間的變化規(guī)律,是學(xué)生會(huì)熟練的通過函數(shù)的圖像來判定一個(gè)函數(shù)是增函數(shù)、還是減函數(shù)。函數(shù)單調(diào)性,單調(diào)區(qū)間的概念掌握起來有一定困難,特別是增函數(shù)、減函數(shù)的定義很抽象,學(xué)生很難理解,這樣增加學(xué)生的負(fù)擔(dān),不利于學(xué)生學(xué)習(xí)興趣的激發(fā)。在情境設(shè)置中,嚴(yán)格按照課標(biāo)要求以二次函數(shù)y=x+1為例,經(jīng)歷畫圖、描述圖象、找單調(diào)區(qū)間、形成單調(diào)性定義、證明其單調(diào)性的過程,將學(xué)生對(duì)單調(diào)性的認(rèn)識(shí)從感性上升到理性,并將定義進(jìn)行應(yīng)用。通過本節(jié)課的學(xué)習(xí),預(yù)計(jì)學(xué)生能理解單調(diào)性的定義,絕大多數(shù)學(xué)生能按照單調(diào)性的證明步驟進(jìn)行證明,能判斷函數(shù)的單調(diào)性,本節(jié)課的評(píng)價(jià)方式為課堂反饋、教師評(píng)價(jià)、學(xué)生自評(píng)相結(jié)合。小結(jié)過程使學(xué)生對(duì)單調(diào)性概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識(shí),體會(huì)到數(shù)學(xué)概念形成的主要三個(gè)階段:直觀感受、文字描述和嚴(yán)格定義。(五)小結(jié)評(píng)價(jià),作業(yè)創(chuàng)新從知識(shí)、方法兩個(gè)方面引導(dǎo)學(xué)生進(jìn)行總結(jié)。高中課程強(qiáng)調(diào)返璞歸真”因此本題不再?gòu)淖C明角度,而是讓學(xué)生再次從定義出發(fā),尋求方法,并體會(huì)轉(zhuǎn)化思想。根據(jù)定義進(jìn)行判斷,體會(huì)判斷可轉(zhuǎn)化成證明。學(xué)生根據(jù)單調(diào)性定義進(jìn)行證明,教師在黑板上書寫證明步驟,再引導(dǎo)學(xué)生總結(jié)證明步驟。拓展探究:已知函數(shù)是(∞,+∞)上的增函數(shù),但是學(xué)生在前面集合的學(xué)習(xí)中已經(jīng)接觸過在運(yùn)動(dòng)中求參數(shù)a的取值范圍,此處可看作是對(duì)前面學(xué)習(xí)的鞏固。2提出問題四:能否說從這個(gè)例子能得到什么結(jié)論?在它的定義域上是減函數(shù)?學(xué)生思考、討論,提出自己觀點(diǎn) 學(xué)生可能會(huì)提出反例,如x1=1,x2=1 進(jìn)一步得出結(jié)論:函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(減)函數(shù),函數(shù)在A∪B上不一定是增(減)函數(shù)教師給出例子進(jìn)行說明:進(jìn)一步提問:函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(減)函數(shù),何時(shí)函數(shù)在A∪B上也是增(減)函數(shù)。得到定義后,再提出如何得到f(x1)(三)概念深化,延伸拓展通過上面的問題,學(xué)生已經(jīng)從描述性語言過渡到嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語言?!叭稳 钡睦斫忉槍?duì)特殊值,學(xué)生可能會(huì)舉反例證明其是不充分的,那么應(yīng)該如何取值呢?學(xué)生可能會(huì)多取一些,也可能會(huì)想到將取值區(qū)間任意小,進(jìn)一步討論得出“任取”二字。然后讓學(xué)生明確,對(duì)于自變量變化時(shí),函數(shù)值具有這兩種變化規(guī)律的函數(shù),進(jìn)而提出問題:二次函數(shù)是增函數(shù)還是減函數(shù)? 進(jìn)一步討論得出:增減性是函數(shù)的局部性質(zhì)據(jù)此,學(xué)生已經(jīng)對(duì)單調(diào)性有了直觀認(rèn)識(shí),緊接著,我提出問題二:能否用自己的理解說說什么是增函數(shù),什么是減函數(shù)? 結(jié)合增減性是局部性質(zhì),學(xué)生會(huì)用直觀描述回答:在一個(gè)區(qū)間里,y隨x增大而增大,則是增函數(shù);y隨x增大而減小就是減函數(shù)。(一)創(chuàng)設(shè)情境,引入新課數(shù)學(xué)課程標(biāo)準(zhǔn)中提出“通過已學(xué)過的函數(shù)特別是二次函數(shù)理解函數(shù)的單調(diào)性”,因此在本節(jié)課的開始,我作了這樣的情境創(chuàng)設(shè),從學(xué)生熟知的一次函數(shù)和二次函數(shù)入手,從初中對(duì)函數(shù)增減性的認(rèn)識(shí)過渡到對(duì)函數(shù)單調(diào)性的直觀感受。引導(dǎo)學(xué)生提出疑問,進(jìn)行思考,從而創(chuàng)造性的解決問題,最終形成概念,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。”因此,根據(jù)教學(xué)內(nèi)容和學(xué)生的認(rèn)知、能力水平,本節(jié)課作為新授課主要采取教師啟發(fā)式教學(xué)法和學(xué)生探究式教學(xué)法。本班學(xué)生特點(diǎn)本班為酒泉中學(xué)高一(4)班,學(xué)生數(shù)學(xué)素養(yǎng)較好。能力結(jié)構(gòu)通過初中對(duì)函數(shù)的學(xué)習(xí),學(xué)生已具備了一定的觀察事物能力,抽象歸納的能力和語言轉(zhuǎn)換能力。因此,本節(jié)課的教學(xué)難點(diǎn)是函數(shù)單調(diào)性的概念形成。情感態(tài)度價(jià)值觀:通過知識(shí)的探究過程培養(yǎng)細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣;領(lǐng)會(huì)用運(yùn)動(dòng)的觀點(diǎn)去觀察分析事物的方法 根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點(diǎn)是函數(shù)單調(diào)性的概念形成和初步運(yùn)用。從高中數(shù)學(xué)學(xué)習(xí)看,函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)形結(jié)合思想的重要內(nèi)容,也是研究變量的變化范圍的有力工具。從函數(shù)知識(shí)網(wǎng)絡(luò)看,單調(diào)性起著承上啟下的作用,一方面,是初中學(xué)習(xí)內(nèi)容的深化,使學(xué)生對(duì)函數(shù)單調(diào)性從感性認(rèn)識(shí)提高到理性認(rèn)識(shí)。本節(jié)課的學(xué)習(xí)處于對(duì)單調(diào)性學(xué)習(xí)的第二層面,通過圖象歸納、抽象出單調(diào)性的準(zhǔn)確定義,并在高中首次經(jīng)歷代數(shù)的嚴(yán)格證明,是對(duì)初中學(xué)習(xí)的一次升華。第二篇:必修1函數(shù)單調(diào)性說課稿必修1《 函數(shù)的單調(diào)性》說課
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1