【摘要】......數(shù)列通項(xiàng)公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式
2025-08-09 23:50
【摘要】......數(shù)列通項(xiàng)公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項(xiàng)公式的求法是??嫉囊粋€知識點(diǎn),一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項(xiàng)公式的
2025-07-02 05:23
【摘要】數(shù)列通項(xiàng)公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項(xiàng)公式的試題概覽年份試題特點(diǎn)或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-07-02 05:32
【摘要】數(shù)列通項(xiàng)公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習(xí)若數(shù)列的遞推公式為,則求這個數(shù)列的通項(xiàng)公式。 ?。ǎ┒?、公式法已知數(shù)列的前項(xiàng)和與的關(guān)系,求數(shù)列的通項(xiàng)可用公式求解.例2.①
2025-07-02 05:29
【摘要】課時序號:36重點(diǎn):1、理解數(shù)列通項(xiàng)公式的意義,掌握等差、等比數(shù)列的通項(xiàng)公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.3、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點(diǎn):1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.2、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、迭代
2025-05-06 18:12
【摘要】......1、公式法:等差數(shù)列、等比數(shù)列的通項(xiàng)公式的求法:若在已知數(shù)列中存在:(常數(shù))或的關(guān)系,可采用求等差、等比數(shù)列的通項(xiàng)公式的求法,確定數(shù)列的通項(xiàng)。2、非等差、等比數(shù)列的通項(xiàng)公式的求法。(1)觀察法:通過觀察數(shù)列中的
2025-07-01 02:18
【摘要】1求數(shù)列通項(xiàng)公式的方法一、知識復(fù)習(xí)1、通項(xiàng)公式:2、等差數(shù)列的通項(xiàng)公式:推導(dǎo)方法:3、等比數(shù)列的通項(xiàng)公式:推導(dǎo)方法:二、求數(shù)列的通項(xiàng)公式方法總結(jié)(一)觀察歸納法:通過觀察尋求na與n的關(guān)系(1)5,55,555,5555,(2)149161,2,
2024-10-29 07:00
【摘要】:——直接利用等差或等比數(shù)列的定義求通項(xiàng)。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式.變式練習(xí):,求的通項(xiàng)公式2.在等比數(shù)列中,,且為和的等差中項(xiàng),求數(shù)列的首項(xiàng)、公比及前項(xiàng)和.求數(shù)列的通項(xiàng)可用公式求解。特征:
2025-06-23 07:01
【摘要】等比數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):1.掌握通項(xiàng)公式,并能應(yīng)用公式解決有關(guān)問題;2.理解等比數(shù)列的性質(zhì),并學(xué)會其簡單應(yīng)用;3.會求兩個正數(shù)的等比中項(xiàng),能利用等比中項(xiàng)的概念解決有關(guān)問題,提高分析、計算能力;4.通過學(xué)習(xí)推導(dǎo)等比數(shù)列的通項(xiàng)公式,掌握“疊乘法”.教學(xué)重點(diǎn):等比數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):
2024-12-13 10:13
【摘要】課題:等差數(shù)列的通項(xiàng)公式班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】:1、會用“疊加法”求等差數(shù)列通項(xiàng)公式;2、會用等差數(shù)列通項(xiàng)公式解決一些簡單問題?!菊n前預(yù)習(xí)】??na,4,7,10,13,16,?,則100a=,猜想na=
2024-11-28 01:05
【摘要】等差數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):1.掌握“疊加法”求等差數(shù)列通項(xiàng)公式的方法;2.掌握等差數(shù)列的通項(xiàng)公式,并能用公式解決一些簡單的問題;3.理解等差數(shù)列的性質(zhì),能熟練運(yùn)用等差數(shù)列的性質(zhì)解決有關(guān)問題.教學(xué)重點(diǎn):等差數(shù)列的通項(xiàng)公式,關(guān)鍵對通項(xiàng)公式含義的理解.教學(xué)難點(diǎn):等差數(shù)列的性質(zhì)和應(yīng)用.教學(xué)方法:
【摘要】課題:等比數(shù)列的通項(xiàng)公式班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1.理解等比數(shù)列的概念;體會等比數(shù)列是用來刻畫一類離散現(xiàn)象的重要數(shù)學(xué)模型?!菊n前預(yù)習(xí)】1.下列哪些數(shù)列是等差數(shù)列,哪些數(shù)列是等比數(shù)列?(1)12lg6lg3lg??????,,;
【摘要】數(shù)列通項(xiàng)公式幾種求法的文獻(xiàn)綜述摘要;從近幾年高考的內(nèi)容來看,數(shù)列是高考的重點(diǎn)內(nèi)容,數(shù)列在實(shí)踐和理論中均有較高的價值,而數(shù)列的列通項(xiàng)公式是數(shù)列的核心內(nèi)容之一。本文從2021-2021年高考求數(shù)列通項(xiàng)公式有關(guān)資料查閱,對數(shù)列通項(xiàng)公式的常用方法做一個文獻(xiàn)綜述。關(guān)鍵詞;數(shù)列、通項(xiàng)公式、求法、綜述.高中教材中的數(shù)列有利于發(fā)展學(xué)生的發(fā)散思維能力
2025-06-10 22:50
【摘要】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見遞推數(shù)列通項(xiàng)公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項(xiàng)公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-04-23 00:58
【摘要】數(shù)列通項(xiàng)公式的十種求法一、公式法二、累加法例1已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。例2已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。()三、累乘法例3已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。()評注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例4已知數(shù)列滿足,求的通項(xiàng)公式。()評
2025-07-02 05:34