【摘要】......數(shù)列通項公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式
2024-08-16 23:50
【摘要】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學中占有非常重要的地位,每年高考都會出現(xiàn)有關數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是??嫉囊粋€知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2025-07-02 05:23
【摘要】數(shù)列通項公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項公式的試題概覽年份試題特點或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標累加法2011新課標是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-07-02 05:32
【摘要】數(shù)列通項公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習若數(shù)列的遞推公式為,則求這個數(shù)列的通項公式?! 。ǎ┒?、公式法已知數(shù)列的前項和與的關系,求數(shù)列的通項可用公式求解.例2.①
2025-07-02 05:29
【摘要】課時序號:36重點:1、理解數(shù)列通項公式的意義,掌握等差、等比數(shù)列的通項公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項公式.3、掌握數(shù)列通項公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點:1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項公式.2、掌握數(shù)列通項公式的常用方法:公式法、累加法、累乘法、迭代
2025-05-06 18:12
【摘要】緒論數(shù)列是中學數(shù)學的一項重要內(nèi)容,在中學數(shù)學體系中相對獨立,但有一定的綜合性和靈活性.高中數(shù)學中的數(shù)列知識主要涉及等差、等比數(shù)列的通項公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項公式是高中數(shù)學中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學思想,又能反映中學生對等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學競賽和高考中.
2025-01-12 06:52
【摘要】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復雜,顯示出很大的反差。使得在學習數(shù)列時感到很困難。同時,數(shù)列題目種類繁多,很難歸類。為了便于研究數(shù)列問題,找出其中某些常見數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見的數(shù)列通項公式的求法作以下歸類。.一、作差求和法m例1在數(shù)列{}中,,,求通項公式.解:原遞推式可化為:則,……,逐項相加
2024-09-05 21:37
【摘要】:——直接利用等差或等比數(shù)列的定義求通項。特征:適應于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式.變式練習:,求的通項公式2.在等比數(shù)列中,,且為和的等差中項,求數(shù)列的首項、公比及前項和.求數(shù)列的通項可用公式求解。特征:
2025-06-23 07:01
【摘要】高二數(shù)學導學案GRSX5-33常見遞推數(shù)列通項公式的求法高二數(shù)學備課組編一、學習目標:1.運用累加、累乘、待定系數(shù)等方法求數(shù)列的通項公式。2.培養(yǎng)學生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣;二、重點
2025-04-23 00:58
【摘要】數(shù)列通項公式的十種求法一、公式法二、累加法例1已知數(shù)列滿足,求數(shù)列的通項公式。例2已知數(shù)列滿足,求數(shù)列的通項公式。()三、累乘法例3已知數(shù)列滿足,求數(shù)列的通項公式。()評注:本題解題的關鍵是把遞推關系轉(zhuǎn)化為,進而求出,即得數(shù)列的通項公式。例4已知數(shù)列滿足,求的通項公式。()評
2025-07-02 05:34
【摘要】數(shù)列知識點及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項:成等差數(shù)列前項和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個成等差數(shù)列,可設為(4)若是等差數(shù)列,且前項和分別為,則(5)為等差數(shù)列(為常數(shù),是關于的常數(shù)項為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負分界項,即:當,解
2024-08-18 09:35
【摘要】通項公式和前n項和1、新課講授:求數(shù)列前N項和的方法1.公式法(1)等差數(shù)列前n項和:特別的,當前n項的個數(shù)為奇數(shù)時,,即前n項和為中間項乘以項數(shù)。這個公式在很多時候可以簡化運算。(2)等比數(shù)列前n項和:q=1時,,特別要注意對公比的討論。(3)其他公式較常見公式:1、2、3、[例1
2025-03-31 02:53
【摘要】數(shù)列的通項公式:是一個數(shù)列的第n項(即an)與項數(shù)n之間的函數(shù)關系注:①有的數(shù)列沒有通項公式,如:3,π,e,6;②有的數(shù)列有多個通項公式,如:???nanncos1???下面談一談數(shù)列通項公式的常用求法:一、觀察法(又叫猜想法,不完全歸納法):觀察數(shù)列中各項與其序號間的關系,分
2025-05-13 02:09
【摘要】......數(shù)列的通項公式教學目標:使學生掌握求數(shù)列通項公式的常用方法.教學重點:運用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式.教學難點:構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式的方法.教學時數(shù):2課
2025-04-23 04:59
【摘要】海豚教育個性化簡案學生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學目標1.復習等差數(shù)列和等比數(shù)列的基本定義;2.學會通過作差法
2024-08-17 10:15