【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實(shí)軸長(zhǎng)是( )A.2B.2C.4D.44.過拋物線y2=2px(p0)的焦點(diǎn)F的直
2025-07-29 20:57
【摘要】單元測(cè)試題-圓錐曲線與方程姓名:學(xué)號(hào):時(shí)間:120分鐘總分:150分組題:曾佩良一、選擇題本題共有10個(gè)小題,每小題5分;在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,把正確選項(xiàng)的代號(hào)填在試卷指定的位置上。1.方程所表示的曲線是 (C)(A)雙曲線 (B)橢圓(C)
【摘要】......圓錐曲線的性質(zhì)一、基礎(chǔ)知識(shí)(一)橢圓:1、定義和標(biāo)準(zhǔn)方程:(1)平面上到兩個(gè)定點(diǎn)的距離和為定值(定值大于)的點(diǎn)的軌跡稱為橢圓,其中稱為橢圓的焦點(diǎn),稱為橢圓的焦距(2)標(biāo)準(zhǔn)方程:①焦點(diǎn)在軸上的橢
2025-06-28 16:01
【摘要】......圓錐曲線與方程專題1、橢圓考點(diǎn)1、橢圓的定義:橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。特別提示:橢圓的
2025-06-28 15:55
【摘要】圓錐曲線?解析幾何是在坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn)、用方程表示點(diǎn)的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進(jìn)一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學(xué)學(xué)科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學(xué)生已掌握平面幾何知識(shí)與平面直角坐標(biāo)系、平面向量、兩點(diǎn)距離公式及基本初等函數(shù)、直線與圓的方程等知識(shí)的基礎(chǔ)上
2024-11-29 02:39
【摘要】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計(jì)設(shè)計(jì)者姓名郭曉泉設(shè)計(jì)者單位華亭縣第二中學(xué)
2025-05-18 01:30
【摘要】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點(diǎn)軌跡為拋物線.故選D. 二、定義法 運(yùn)用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長(zhǎng)度之和為39,求的重心的軌跡方程.
2025-07-26 00:18
【摘要】WORD資料可編輯圓錐曲線光學(xué)性質(zhì)的證明及應(yīng)用初探一、圓錐曲線的光學(xué)性質(zhì)1.1 橢圓的光學(xué)性質(zhì):從橢圓一個(gè)焦點(diǎn)發(fā)出的光,經(jīng)過橢圓反射后,反射光線都匯聚到橢圓的另一個(gè)焦點(diǎn)上;()橢圓的這種光學(xué)特性,常被用來設(shè)計(jì)一些照明設(shè)備或聚熱裝置.例如在處放置一個(gè)熱源,那
【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長(zhǎng)為4a(定值)證明:由橢圓的定義即 2、焦點(diǎn)⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當(dāng)P在短軸上時(shí),∠F1PF2最大證明:
2024-08-18 04:45
【摘要】1.設(shè)P是橢圓+=1上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( )A.4 B.5C.8 D.10答案:D2.橢圓+=1的焦點(diǎn)坐標(biāo)是( )A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)答案:D3.已知橢圓的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(
【摘要】二圓錐曲線的參數(shù)方程更上一層樓基礎(chǔ)·鞏固1直線=1與橢圓=1相交于A、B兩點(diǎn),該橢圓上點(diǎn)P使得△PAB的面積等于3,這樣的點(diǎn)P共有()思路解析:設(shè)P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2024-08-18 03:29
【摘要】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2024-08-17 07:08
【摘要】第1頁共35頁普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-08-07 15:29
【摘要】曲線方程及圓錐曲線典型例題解析一.知識(shí)要點(diǎn)1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動(dòng)點(diǎn)坐標(biāo)。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo)。(1)所研究的問題已給出坐標(biāo)系,即可直接設(shè)點(diǎn)。(2)沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。2、現(xiàn)
2025-08-01 09:19
【摘要】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件77《圓錐曲線-軌跡方程》基本知識(shí)概要:一、求軌跡的一般方法:1.直接法:如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡(jiǎn)單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡(jiǎn),證明五個(gè)步驟,最后的證明可以省
2025-07-30 10:09