【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-07-01 01:32
【摘要】第三章存在和唯一性定理一.[內(nèi)容提要]本章主要介紹解的存在和唯一性定理、,學(xué)過這一定理之后,對(duì)于微分方程的通解概念,才由形式上的理解轉(zhuǎn)為實(shí)質(zhì)上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關(guān)于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結(jié)果,,都是很有意義的.二.[關(guān)鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-07-05 11:50
【摘要】第一篇:常微分方程答案第三章 =x+y2通過點(diǎn)(0,0)的第三次近似解。dx 解:f(x,y)=x+y2,令j0(x)=y0=0,則 j1(x)=y0+òf(x,j0(x))dx=òxdx=...
2024-10-27 20:18
【摘要】常微分方程論文學(xué)院:數(shù)學(xué)科學(xué)學(xué)院班級(jí):12級(jí)統(tǒng)計(jì)班指導(dǎo)教師:宋旭霞小組成員:張維萍付佳奇張韋麗張萍
2025-06-11 12:01
【摘要】例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-14 03:00
【摘要】目錄上頁下頁返回結(jié)束微分方程課程的一個(gè)主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達(dá)出來,但對(duì)一般的微分方程是無法求解的,如對(duì)一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對(duì)某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問題第二章
2024-12-14 09:04
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-05-05 06:42
【摘要】目錄上頁下頁返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁下頁返回
2024-10-25 17:11
【摘要】YANGZHOUUNIVERSITY一階微分方程的機(jī)動(dòng)目錄上頁下頁返回結(jié)束習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問題解法及應(yīng)用第十二章YANGZHOUUNIVERSITY一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵
2025-07-23 23:41
【摘要】目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個(gè)標(biāo)準(zhǔn)類型
【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2024-09-06 11:53
【摘要】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點(diǎn):一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對(duì)應(yīng)于非齊次線性方程的齊次線性方程.
2024-09-04 06:00
【摘要】可降階高階微分方程機(jī)動(dòng)目錄上頁下頁返回結(jié)束一、型的微分方程二、型的微分方程三、型的微分方程可降階微分方程的解法——降階法逐次積分令,)(xpy??
2025-05-20 17:48
【摘要】二階常微分方程解的存在問題分析畢業(yè)論文目錄§1引言 5§2常系數(shù)線性微分方程的解法 5二階常系數(shù)齊次線性微分方程的解法——特征方程法 5二階常系數(shù)非齊次線性微分方程的解法 7Ⅰ: 7Ⅱ: 10§3二階微分方程的降階和冪級(jí)數(shù)解法 11可將階的一些方程類型 11二階線性微分方程的冪級(jí)數(shù)解法 14
2025-06-24 06:16
【摘要】微分方程模型新鄉(xiāng)學(xué)院數(shù)學(xué)系§微分方程的幾個(gè)簡(jiǎn)單實(shí)例在許多實(shí)際問題中,當(dāng)直接導(dǎo)出變量之間的函數(shù)關(guān)系較為困難,但導(dǎo)出包含未知函數(shù)的導(dǎo)數(shù)或微分的關(guān)系式較為容易時(shí),可用建立微分方程模型的方法來研究該問題,本節(jié)將通過一些最簡(jiǎn)單的實(shí)例來說明微分方程建模的一般方法。在連續(xù)變量問題的研究中,微分方程是十分常用的數(shù)學(xué)工具之一
2025-01-09 23:53