freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于cpld與fpga的循環(huán)碼編與譯碼器的建模與設(shè)計(jì)-文庫(kù)吧資料

2024-11-15 22:08本頁(yè)面
  

【正文】 在輸出 c的同時(shí), s0、 s s2依次循環(huán)移位。 s 0 s 1 s 27 級(jí) 緩 存 器接 收 碼 字y ( x )e輸 出 碼字 XXX 14 圖 循環(huán)碼譯碼器原理圖 譯碼器的工作步驟如下: 將移位寄存器清零。且緩存器輸出的接收數(shù)據(jù)是一個(gè)錯(cuò)誤數(shù)據(jù),所以譯碼時(shí)只需要檢測(cè) ( 101)伴隨式。檢測(cè)到這種伴隨式說(shuō)明 6y 上的數(shù)據(jù)必須糾正。 XXX 13 ( 7,4)循環(huán)碼可以糾正碼字 7個(gè)碼元中的任何單個(gè)錯(cuò)誤,利用伴隨子進(jìn)行 糾錯(cuò)的過(guò)程如表 所示。若 y(x)有錯(cuò),整除后的余項(xiàng)不為零。 end endmodule 采用 ModelSim SE軟件進(jìn)行仿真,得到下面的波形圖: 圖 循環(huán)碼編碼器仿真時(shí)序圖 循環(huán)碼譯碼器 由于循環(huán)碼的任一多項(xiàng)式 T( x) 均能被 g(x)整除,因此可以利用接收到的碼組 y(x)去除以生成多項(xiàng)式 g(x)來(lái)檢錯(cuò)。 always(posedge clk) begin u=u+439。 clk = 0。 // Instantiate the Unit Under Test (UUT) cycle uut ( .c(c), XXX 12 .u(u), .clk(clk) )。 reg clk。 end end endmodule 測(cè)試模塊代碼: module test。d1=d0。i=i+1) //該 for循環(huán)計(jì)算碼組的后 3個(gè)碼元 begin c[i]=d2。 end for(i=4。d1=d0^temp。 temp=d2^c[i]。i4。d2=0。 always (posedge clk) XXX 11 begin d0=0。 reg d0,d1,d2,temp。 input clk。 output[6:0] c。其中輸入和輸出碼元均采用并行方式。重復(fù)上述過(guò)程進(jìn)行下一組信息碼元編碼。另一路則將全部信息元 送入 到 除法電路,并完成除法運(yùn)算,這是移位寄存器中的狀態(tài)就是碼的監(jiān)督元 0 1 2( , , )c c c 。 XXX 10 D 0 D 1 D 2門輸 入 u ( x )21輸 出 碼 字 圖 循環(huán)碼編碼器原理 利用該結(jié)構(gòu)進(jìn)行編碼的過(guò)程如下: 3 級(jí)移位寄存器初值為 000,這時(shí)門選 為 通,信息組以 30,...,uu次序分兩路輸入,一路直接輸出,另一路送入 g(x)除法電路。因此對(duì)應(yīng)的輸出碼字為: (0111001)c? ,其中最右邊的 4位為信息元。 例如( 7,4)循環(huán)碼生成多項(xiàng)式 ? ? 3g x 1 xx? ? ? ,則 : 32() 00011010011010()0110100()1101000()x g xx g xGx g xgx?? ???? ????? ???? ????( x)= ( ) 根據(jù)生成矩陣,我們利用循環(huán)碼自生的循環(huán)性,可以方便的實(shí)現(xiàn)編碼器。特別是用 g(x)表示前 k1位皆為零的碼組,稱為生成多項(xiàng)式。 功能仿真就是直接對(duì) VHDL、原理圖描述或其他描述形式的邏輯功能進(jìn)行測(cè)試模擬,以了解其實(shí)現(xiàn)的功能是否滿足原設(shè)計(jì)的要求,仿真過(guò)程不涉及任何具體器件的硬件特性。 ( 3)適配 XXX 9 適配器也稱結(jié)構(gòu)綜合器,它的功能是將綜合器產(chǎn)生的網(wǎng)表文件配置于指定的目標(biāo)器件中, 使之 產(chǎn)生最終的下載文件,如 JEDEC、 JAM格式的文件。其中 HDL文本包括( VHDL和 Verilog)兩種源程序。 、 FPGA設(shè)計(jì)流程 FPGA的設(shè)計(jì) 流程圖如下: 原 理 圖 / H D L 文 本 編 輯綜 合F P G A 適 配F P G A 編 程 下 載時(shí) 序 與 功 能 門 級(jí) 仿 真F P G A 器 件 和 電 路 系 統(tǒng) 圖 FPGA設(shè)計(jì)流程 (1) 設(shè)計(jì)輸入 將電路系統(tǒng)以一定的表達(dá)方式輸入計(jì)算機(jī),是在 EDA 軟件平臺(tái)上對(duì) FPGA 開(kāi)發(fā)的最初 步驟。 FPGA可由用戶自定義其內(nèi)部的邏輯和功能,同時(shí)又能進(jìn)行無(wú)限次的重新配置,加上 PC機(jī)上 CAD輔助設(shè)計(jì)軟件和強(qiáng)大的仿真工具,使得電子設(shè)計(jì)工程師在辦公室或?qū)嶒?yàn)室就可以設(shè)計(jì)自己的 ASIC 器件,實(shí)現(xiàn)用戶規(guī)定的各種專門用途,極大的增加了電子系統(tǒng)設(shè)計(jì)的靈活性。 2 循環(huán)碼的編譯碼器的 FPGA 實(shí)現(xiàn) XXX 8 FPGA及其設(shè)計(jì)原理簡(jiǎn)介 、 FPGA介紹 FPGA( Field Programmable Gate Array) 全稱為現(xiàn)場(chǎng)可編程門陣列,是 1984年由美國(guó) Xilinic公司發(fā)明的基于 SRAM工藝以查找表( LUT)為基本單元的新型可編程邏輯器件( PLD)。本章從循環(huán)碼的定義開(kāi)始,依次分析了循環(huán)碼的碼多項(xiàng)式、生成多項(xiàng)式、生成矩陣,以及循環(huán)碼的監(jiān)督多項(xiàng)式、監(jiān)督矩陣,同時(shí)舉例說(shuō)明了如何求得這些多項(xiàng)式和矩陣。通過(guò)計(jì)算監(jiān)督子 S( x),就可確定錯(cuò)誤位置,從而糾錯(cuò)。為了能夠糾錯(cuò),要求每個(gè)可糾正 的錯(cuò)誤圖樣必須與一個(gè)特定的余式一一對(duì)應(yīng)。將接受碼字 R( x) 用生成多項(xiàng)式 g(x)去除,求的余式,即監(jiān)督子 S( x),以它是否為“ 0”來(lái)判斷碼字中有無(wú)錯(cuò)誤。 假設(shè)發(fā)送的碼字多項(xiàng)式為 C( x) ,錯(cuò)誤圖樣為 E(x),則接收端收到的碼多 項(xiàng)式 R(x)=C(x)+E(x),由于 C(x)必被 g(x)整除,則 : ( ) ( ) ( ) ( )( ) ( ) ( )R x C x E x E xg x g x g x??? ( ) 定義 g(x)除 E(x)所得的余式為 監(jiān)督子或校驗(yàn)子 ,用 S( x) 表示,則 : ( ) ( ) m od ( ) ( ) m od ( )S x E x g x R x g x?? ( ) 其中“ mod”為求模運(yùn)算符。例如: ( 7,4)循環(huán)碼 7 3 4 21 ( 1 ) ( 1 )x x x x x x? ? ? ? ? ? ? 4次多項(xiàng)式為生成多項(xiàng) 式: 4 2 4 3 2 14 3 2 1 0( ) 1g x x x x g x g x g x g x g? ? ? ? ? ? ? ? ? 3此多項(xiàng)式是監(jiān)督多項(xiàng)式: 3 3 23 2 1 0( ) 1h x x x h x h x h x h? ? ? ? ? ? ? 循環(huán)碼的監(jiān)督矩陣: XXX 6 由等式 1 ( ) ( )nx h x g x? ? ? 兩端同 次 項(xiàng)系數(shù)相等得: 3x 的系數(shù)得: 3 0 0 1 1 2 0 3 0g h g h g h g h? ? ? ? 4x 的系數(shù)得: 4 0 3 1 2 2 1 3 0g h g h g h g h? ? ? ? 5x 的系數(shù)得: 4 1 3 2 2 3 0g h g h g h? ? ? 6x 的系數(shù)得: 4 2 3 33 0g h g h?? 將上面的方程組寫成矩陣形式為: 0 1 2 340 1 2 330 1 2 320 1 2 3100000000 000 00000Th h h hgh h h hgh h h hgh h h hgg???????????????????????????????????? ( 上式中,列陣的元素是生成多 項(xiàng)式 g( x)的系數(shù),是一個(gè)碼字,那么第一個(gè)矩陣則為( 7,3)循環(huán)碼的 監(jiān)督矩陣, 循環(huán)碼監(jiān)督矩陣的構(gòu)成: 由式( )可見(jiàn),監(jiān)督矩陣的第一行是碼的監(jiān)督多項(xiàng)式 h(x)的系數(shù)得反序排列,第二、三、四行是第一行的移位; 可用監(jiān)督多項(xiàng)式的系數(shù)來(lái)構(gòu)成監(jiān)督矩陣 從而 ( n, k)循環(huán)碼的監(jiān)督矩陣為 : *11*11(,)111*11() 0... 01 ... ... 10... 1 ... ... 10()....... . ... . 1... ....1 ... 1... ... ..0()kknkknkkhx hhhhx h xHhhhhx h x???????? ???? ???? ?????? ???? ?????? ( ) 對(duì)偶問(wèn)題 : 如果 1 ( ) ( )nx h x g x? ? ? ,其中 g( x)為( nk)次多項(xiàng)式,以 g( x)為生成多項(xiàng)式,則生成一個(gè)( n, k)循環(huán)碼;以 h( x)為生成多項(xiàng)式,則生成( n, nk)循環(huán)碼;這兩個(gè)循環(huán)碼互為對(duì)偶碼。 分解多項(xiàng)式 1nx? ,取其 4次因式作生成多項(xiàng)式 : 7 3 2 31 ( 1 ) ( 1 ) ( 1 )x x x x x x? ? ? ? ? ? ? 可將一次和 任意 一 個(gè)三次因式的乘積作為生成多項(xiàng)式,因而可取 : 3 2 4 21 ( ) ( 1 ) ( 1 ) 1g x x x x x x x? ? ? ? ? ? ? ? 或 3 4 3 22 ( ) ( 1 ) ( 1 ) 1g x x x x x x x? ? ? ? ? ? ? ? 、循環(huán)碼的監(jiān)督多項(xiàng)式和監(jiān)督矩陣 循環(huán)碼的監(jiān)督多項(xiàng)式 :設(shè) g( x)為( n, k)循環(huán)碼的生成多項(xiàng)式,必為( 1nx? )的因式, 則有1 ( ) ( )nx h x g x? ? ? ,式中 h( x)為 k次多項(xiàng)式,稱為( n, k)循環(huán)碼的監(jiān)督多項(xiàng)式。 結(jié)論 :當(dāng)求一個(gè)( n, k)循環(huán)碼時(shí),只要分解多項(xiàng)式( 1nx? ),從中取出( nk)次因式作生成多項(xiàng)式即可。所以:作一 個(gè) 循環(huán)碼的關(guān)鍵,就在于尋找一個(gè)適當(dāng)?shù)纳啥囗?xiàng)式。 那么如何尋找一個(gè)合適的生成多 項(xiàng)式? 由下面式子可知:循環(huán)碼的多項(xiàng)式等于信息多項(xiàng)式乘以生成多項(xiàng)式。 注: 一般說(shuō)來(lái),這種循環(huán)碼仍具有把( n , k)線性碼碼中任一非 0 碼矢循環(huán)移位必為一碼矢的循環(huán)特性,但從一個(gè)非 0碼矢出發(fā),進(jìn)行循環(huán)移位,就未必能得到碼的所有非 0碼矢了。 定理 2:在( n , k)循環(huán)碼中,每個(gè)碼多項(xiàng)式 C( x)都是 g( x)的倍式;而每個(gè)為 g( x)倍式的次數(shù)小于或等于( n1)的多項(xiàng)式,必是一個(gè)碼多項(xiàng)式。 、 循 環(huán)碼的生成多項(xiàng)式 碼的生成矩陣一旦確定,碼就確定了;這就說(shuō)明:( n, k)循環(huán)碼可由它的一個(gè)( nk)次碼多項(xiàng)式 g( x)來(lái)確定;所以說(shuō) g( x)生成了( n, k)循環(huán)碼,因此稱 g( x)為碼的生成多項(xiàng)式 ,表示為: 11 1 0( ) .. .n k n knkg x x g x g x g? ? ???? ? ? ? ? ( ) g( x)是一個(gè)( nk)次為 1的多項(xiàng)式。 表 循環(huán)碼的循環(huán)移位 移位次數(shù) 碼字 碼多項(xiàng)式 0 0011101 4321x x x? ? ? ? ?7 1x ?模 1 0111010 4 3 2 5 4 3( 1 )x x x x x x x x? ? ? ? ? ? ? ? ?7 1x ?模 2 1110100 2 4 3 2 6 5 4 2( 1 )x x x x x x x x? ? ? ? ? ? ? ? ?7 1x ?模 3 1101001 3 4 3 2 6 5 3( 1 ) 1x x x x x x x? ? ? ? ? ? ? ? ?7 1x ?模 4 1010011 4 4 3 2 6 4( 1 ) 1x x x x x x x? ? ? ? ? ? ? ? ?7 1x ?模 5 0100111 5 4 3 2 5 2( 1 ) 1x x x x x x x? ? ? ? ? ? ? ? ?7 1x ?模 6 1001110 6 4 3 2 6 3 2( 1 )x x x x x x x x? ? ? ? ? ? ? ? ?7 1x ?模 XXX 4 循環(huán)碼的編碼 、循環(huán)碼的生成矩陣 根據(jù)循環(huán)碼的循環(huán)特性,可由一個(gè)碼字的循環(huán)移位得到其它的非 0碼字。 、 舉例:( 7,4)循環(huán)碼 可由任一個(gè)碼矢,比如( 0011101)經(jīng)過(guò)循環(huán)移位,得到其他 6 個(gè)非 0 碼矢;同時(shí)也可由相應(yīng)的碼多項(xiàng)式( 4321x x x? ? ? ),乘以 ix ( i=1,2, ? , 6),再模( 7x +1)運(yùn)算得到其它 6 個(gè)非 0 碼多項(xiàng)式。 c.生成碼多項(xiàng)式 xn- km(x)+r(x)。 x1。用
點(diǎn)擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1