【摘要】★講師簡介?章哲☆著名管理培訓(xùn)專家、劍橋國際培訓(xùn)師導(dǎo)師。曾擔(dān)任股份制企業(yè)總經(jīng)理六年,并歷任清華大學(xué)職業(yè)經(jīng)理訓(xùn)練中心副主任、首席培訓(xùn)專家等職,是國內(nèi)最早進(jìn)入管理培訓(xùn)領(lǐng)域、引入國際企業(yè)培訓(xùn)理念和方法的實(shí)戰(zhàn)型專家之一。1995起先后為數(shù)百家跨國企業(yè)和內(nèi)資企業(yè)提供管理課程或擔(dān)任管理顧問。客戶包括中國聯(lián)通、廈華電子、TCL集團(tuán)、首信股份、奇瑞汽車、東風(fēng)汽車、猛獅客車、三九醫(yī)
2025-06-29 06:34
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-26 01:36
2025-07-30 19:51
【摘要】第一篇:2、綜合法和分析法證明不等式 南化一中高三數(shù)學(xué)第一輪復(fù)習(xí)講義55第六章《不等式》 § 【復(fù)習(xí)目標(biāo)】 1.熟悉證明不等式的綜合法、分析法,并能應(yīng)用其證明不等式; 2.理解分析法的實(shí)質(zhì)是...
2024-11-08 18:54
【摘要】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實(shí)數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負(fù)號、零)。變形時常用的方法有...
2024-10-28 23:16
【摘要】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【摘要】2022年8月28日星期日不等式的證明第二講證明不等式的基本方法綜合法與分析法二、綜合法與分析法例a,b,c0,且不全相等,求證:a(b2+c2)+b(c2+a2)+c(a2+b2)6abc分析:觀察待證不等式的特點(diǎn)與重要不等式:a2+b2≥2ab有關(guān)所以證明可
2024-08-18 17:23
【摘要】不等式的證明(放縮法)1.設(shè),,則的大小關(guān)系是()A.B.C.D.2.已知三角形的三邊長分別為,設(shè),則與的大小關(guān)系是()A.B.C.D.3.設(shè)不等的兩個正數(shù)滿足,則的取值范
2025-07-30 12:58
【摘要】不等式的證明松北高級中學(xué)吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-18 05:07
【摘要】第一篇:賦值法證明不等式 賦值法證明不等式的有關(guān)問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當(dāng)0 222a(b-a)...
2024-10-29 06:45
【摘要】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時最常用的推證技巧,但經(jīng)教學(xué)實(shí)踐告訴我們,這種技巧卻是不等式證明部分的一個教學(xué)難點(diǎn)。學(xué)生在證明不等式時,常因...
2024-10-28 03:46
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】不等式的證明——分析法證明不等式重要不等式:比較法之一(作差法)步驟:作差——變形——判斷與0的關(guān)系——結(jié)論學(xué)過的證明方法:比較法之二(作商法)步驟:作商——變形——判斷與1的關(guān)系——結(jié)論綜合法:利用某些已經(jīng)證明過的不等式(例如算術(shù)平均
2024-11-15 02:26
【摘要】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時經(jīng)常用到:(1)a2≥
2024-11-14 15:49
【摘要】上節(jié)課我們學(xué)習(xí)了作差比較法,這節(jié)課來學(xué)習(xí)作商比較法.類比于作差比較法,我們先做分析;一.溫故知新說明;比商法不可忽視作商時分母的符號,它的確定是其中的一個步驟。1、應(yīng)用范圍;不等式兩端是乘積的形式或冪、指數(shù)式。2、理論依據(jù);3、基本步驟;作商----變形----判斷商與1的大小----結(jié)論例題:解
2024-11-14 18:13