【摘要】【情境引入】1.觀察圖中的等腰三角形ABC,分別說出它們的腰、底邊、頂角和底角.等腰三角形的軸對稱性(1)【情境引入】2.把該等腰三角形沿頂角平分線折疊,你有什么發(fā)現(xiàn)?ABCADB(C)ABCD等腰三角形的軸對稱性(1)【探究活動】問題
2024-11-30 21:06
【摘要】問題:1.等腰三角形有哪些性質(zhì)?等腰三角形的軸對稱性(3)2.怎樣判定一個三角形是等腰三角形?CEBAD:如圖,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.求證:AB=AC.等腰三角形的軸對稱性(3)CEBAD
2024-11-30 21:08
【摘要】DCBA21FEDCAB年級八年級課題等腰三角形(2)課型新授教學媒體多媒體教學目標知識技能1.掌握并會運用“等角對等邊”判定等腰三角形.2.歸納證明兩條線段相等的常用方法.過程方法
2024-11-30 21:46
【摘要】等腰三角形一、學生知識狀況分析在八年級上冊第七章《平行線的證明》,學生已經(jīng)感受了證明的必要性,并通過平行線有關(guān)命題的證明過程,習得了一些基本的證明方法和基本規(guī)范,積累了一定的證明經(jīng)驗;在七年級下,學生也已經(jīng)探索得到了有關(guān)三角形全等和等腰三角形的有關(guān)命題,這些都為證明本節(jié)有關(guān)命題做了很好的鋪墊。二、教學任務分析本節(jié)將進一步回顧和證明全等三角形
2024-11-30 22:36
【摘要】第2課時等腰三角形的判定知識要點基礎(chǔ)練知識點1等腰三角形的判定△ABC中,∠A的相鄰外角是70°,要使△ABC為等腰三角形,則∠B為(B)°°°或35°°,不可能是等腰三角形的是(B
2025-06-27 12:24
【摘要】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)知識要點基礎(chǔ)練知識點1等腰三角形的性質(zhì)——等邊對等角40°,則它的底角度數(shù)為(D)°°°°,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠
【摘要】等腰三角形①學習目標。。。創(chuàng)設情境創(chuàng)設情境下載圖片創(chuàng)設情境等腰三角形你知道什么是等腰三角形嗎?有兩條邊相等的三角形叫做等腰三角形。ABC腰腰底邊底角頂角相等的兩條邊AB和AC叫做腰
2024-10-08 12:33
【摘要】執(zhí)教者市三中江建軍節(jié)選自人教版八年級上冊20世紀著名數(shù)學家赫爾曼·外爾所說的,“對稱是一種思想,人們畢生追求,并創(chuàng)造次序、美麗和完善……”如圖,在△ABC中,∠ABC的角平分線交AC于P,一個同學得到了PA=PC,你覺得對嗎?P問題添加什
2024-11-17 01:34
【摘要】《等腰三角形》教學設計科目:八年級數(shù)學單 位:司竹中學執(zhí)教者:郭春蓉二0一六年十月.1等腰三角形教案司竹初級中學:郭春蓉【教學目標】理解并掌握等腰三角形的定義,探索等腰三角形的性質(zhì);能夠用等腰三角形的性質(zhì)解決相應的數(shù)學問題. 在探索等腰三角形的性質(zhì)的過程中體會知識間的關(guān)系,感受數(shù)學與生活的
2025-04-22 12:11
【摘要】(人教版)八年級數(shù)學上冊等腰三角形的判定我們在上一節(jié)學習了等腰三角形的性質(zhì)?,F(xiàn)在你能回答我一些問題嗎?一、復習:1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理的逆命題是什么?如果一個三角形有兩個角相等,那么這個三角形是等腰三角形。
2024-11-29 02:16
【摘要】問題:我們知道三角形中存在不等邊的三角形,那么邊不等,會形成它們所對角也不等嗎?例如:在△ABC中,ABAC,那么∠C∠B故∠C>
2024-11-17 12:46
【摘要】八年級上冊等腰三角形(第3課時)下列圖片中有你熟悉的數(shù)學圖形嗎?你能說出此圖形的名稱嗎?創(chuàng)設情境,導入新知三條邊都相等的三角形是等邊三角形.創(chuàng)設情境,導入新知問題滿足什么條件的三角形是等邊三角形?等邊三角形ABC聯(lián)系:等邊三角形是
2024-11-29 01:09
【摘要】年級八年級課題等腰三角形(1)課型新授教學媒體多媒體教學目標知識技能1.掌握等腰三角形“等邊對等角”的性質(zhì).2.掌握等腰三角形“三線合一”的性質(zhì).3.歸納證明兩個角相等的常用方法.過程方法1.通
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三
2025-06-24 12:57
【摘要】第十三章軸對稱等腰三角形等腰三角形第2課時等腰三角形的判定2022秋季數(shù)學八年級上冊?R等腰三角形的判定一個三角形有兩個角,則這兩個角所對的邊也(簡寫成“等角對”).自我診斷1.在△ABC中,∠B=∠C,AB=5,則AC的
2025-06-19 14:06