【摘要】【情境引入】1.觀察圖中的等腰三角形ABC,分別說出它們的腰、底邊、頂角和底角.等腰三角形的軸對稱性(1)【情境引入】2.把該等腰三角形沿頂角平分線折疊,你有什么發(fā)現(xiàn)?ABCADB(C)ABCD等腰三角形的軸對稱性(1)【探究活動】問題
2024-11-30 21:06
【摘要】問題:1.等腰三角形有哪些性質(zhì)?等腰三角形的軸對稱性(3)2.怎樣判定一個三角形是等腰三角形?CEBAD:如圖,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.求證:AB=AC.等腰三角形的軸對稱性(3)CEBAD
2024-11-30 21:08
【摘要】等腰三角形性質(zhì)的應用——復習課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
2024-12-02 15:15
【摘要】等腰三角形羅源三中黃招良圖中有些你熟悉的圖形嗎?圖中有些你熟悉的圖形嗎?它們有什么共同特點?北京五塔寺西安半坡博物館斜拉橋梁體育觀看臺架埃及金字塔
2024-08-14 13:41
【摘要】【知識點回顧】軸對稱:一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱。這條直線叫作對稱軸,兩個圖形中的對應點叫做對稱點。軸對稱的性質(zhì):1、關于軸對稱的圖形全等。2、如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線。線段垂直平分線的性質(zhì):線段的垂直平分線上
2025-04-01 04:25
【摘要】ABC1.等邊對等角.等腰三角形有哪些性質(zhì)呢?2.頂角的角平分線、底邊上的中線、底邊上的高三線合一.等腰三角形的軸對稱性(2)問題:如右圖所示△ABC是等腰三角形,AB=AC,倘若一不留心,它的一部分被墨水涂沒了,只留下一條底邊BC和一個底角∠C.同學們想一想,有沒有辦法把原來的等腰三角形ABC重新畫出來?大家
【摘要】(n-2)×180°三角形與三角形有關的線段a-b<c<a+b(a-b>0)高三角形的邊三角形的三邊關系中線角平分線的定義位置、交點三角形的內(nèi)角和多邊形的內(nèi)角和多邊形的外角和三角形的外角和多邊形外角和為360°鑲嵌的原理
2024-12-15 16:28
【摘要】ABCD軸對稱與等腰三角形練習題一.填空題(-2,1)關于x軸的對稱點是,關于y軸的對稱點是P1(a,3)和點P2(-2,b)關于y軸對稱,則a=,b=;若關于x軸對稱,則a=,b=P1(a,3)和點P2(
2024-12-04 21:30
【摘要】第2課時等腰三角形的判定知識要點基礎練知識點1等腰三角形的判定△ABC中,∠A的相鄰外角是70°,要使△ABC為等腰三角形,則∠B為(B)°°°或35°°,不可能是等腰三角形的是(B
2025-06-23 00:16
【摘要】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)知識要點基礎練知識點1等腰三角形的性質(zhì)——等邊對等角40°,則它的底角度數(shù)為(D)°°°°,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠
2025-06-23 00:17
【摘要】等腰三角形的性質(zhì)倉山鎮(zhèn)中蔣良全復習已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實驗研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-12-02 15:54
【摘要】ACB腰腰底邊頂角底角底角一起回憶復習概念在△ABC中(1)∵AB=AC,AD⊥BC,∴∠___=∠___,____=____;(2)∵AB=AC,AD是中線,∴∠_=∠_,____⊥____;(3)∵AB=AC,AD是角平分線,∴____⊥____,____=
2024-08-28 20:34
【摘要】第十三章軸對稱等腰三角形的判定湖北省通山縣教育局教研室袁觀六八年級上冊創(chuàng)設問題情境問題1等腰三角形的性質(zhì)1是怎樣的?這個命題的題設和結(jié)論分別是什么?性質(zhì)1等腰三角形的兩個底角相等.結(jié)論:兩個底角相等題設:一個三角形是等腰三角形追問交換這個命題的題設和結(jié)論,你能得到一個怎樣的新
2024-10-06 13:01
【摘要】探索·合作·創(chuàng)新三步五環(huán)教學法張麗紅學習目標探索·合作·創(chuàng)新三步五環(huán)教學法、等邊三角形的性質(zhì)和判定進行簡單的計算、推理證明。,構建等腰三角形的知識體系。,數(shù)形結(jié)合,轉(zhuǎn)化,方程等數(shù)學思想方法。探索·合作·創(chuàng)新三步五環(huán)教學法名
2024-12-02 13:18
【摘要】等腰三角形的判定1、等腰三角形的性質(zhì)?2、等腰三角形的判定方法都有哪些?定義:有兩邊相等的三角形是等腰三角形還有其他方法嗎?導入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警,當時測得∠A=∠B.如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?