【摘要】第一篇:考研數(shù)學(xué)一線性代數(shù)公式 1、行列式 ,展開后有n!項,可分解為2n行列式;: ①、主對角行列式:主對角元素的乘積; n(n-1) ②、副對角行列式:副對角元素的乘積′(-1)③、上、...
2024-11-16 23:11
【摘要】1考研數(shù)學(xué)導(dǎo)學(xué)班輔導(dǎo)講義線性代數(shù)部分—矩陣?yán)碚撘?、矩陣基本概?、矩陣的定義—形如??????????????mnmmnnaaaaaaaaa???????212222111211,稱為矩陣nm?,記為nmijaA??)(。特殊矩
2024-09-07 12:09
【摘要】線性代數(shù)超強(qiáng)總結(jié)√關(guān)于:①稱為的標(biāo)準(zhǔn)基,中的自然基,單位坐標(biāo)向量;②線性無關(guān);③;④;⑤任意一個維向量都可以用線性表示.√行列式的計算:①若都是方陣(不必同階),則②上三角、下三角行列式等于主對角線上元素的乘積.③關(guān)于副對角線:√逆矩陣的求法:①②③④
2025-06-30 06:54
【摘要】中國最龐大的下載資料庫(版權(quán)歸原作者所有)中國最龐大的下載資料庫(版權(quán)歸原作者所有)1線性代數(shù)攻略線性代數(shù)由兩部分組成:第一部分:用矩陣解方程組(判斷解的存在性,用有限個解表示所有的解)第二部分:用方程組解矩陣(求特征值,特征向量,對角化,化簡實二次型)中國最龐大的資料庫下載主觀題對策1.計
2025-07-21 21:01
【摘要】第一篇:線性代數(shù)總結(jié) 線性代數(shù)總結(jié)[轉(zhuǎn)貼2008-05-0413:04:49] 字號:大中小 線性代數(shù)總結(jié) 一、課程特點 特點一:知識點比較細(xì)碎。 如矩陣部分涉及到了各種類型的性質(zhì)和關(guān)系,...
2024-10-29 06:20
【摘要】....線性代數(shù)復(fù)習(xí)總結(jié)大全第一章行列式二三階行列式N階行列式:行列式中所有不同行、不同列的n個元素的乘積的和(奇偶)排列、逆序數(shù)、對換行列式的性質(zhì):①行列式行列互
2025-04-23 08:31
【摘要】第一章行列式1.為何要學(xué)習(xí)《線性代數(shù)》?學(xué)習(xí)《線性代數(shù)》的重要性和意義。答:《線性代數(shù)》是理、工、醫(yī)各專業(yè)的基礎(chǔ)課程,它是初等代數(shù)理論的繼續(xù)和發(fā)展,它的理論和方法在各個學(xué)科中得到了廣泛的應(yīng)用。2.《線性代數(shù)》的前導(dǎo)課程。答:初等代數(shù)。3.《線性代數(shù)》的后繼課程。答:高等代數(shù),線性規(guī)劃,運(yùn)籌學(xué),經(jīng)濟(jì)學(xué)等。4.如何學(xué)習(xí)《線性代數(shù)》?答:掌握各章節(jié)的基
2025-03-29 12:03
【摘要】線代框架之線性方程組:線性方程組的矩陣式Ax??,其中1112111212222212,,nnmmmnnmaaaxbaaaxbAxaaaxb??????????????????????????????????
2025-01-12 22:11
【摘要】網(wǎng)友songhonger原創(chuàng),原創(chuàng)帖子地址√初等矩陣的性質(zhì):√設(shè),對階矩陣規(guī)定:為的一個多項式.√√√的特征向量不一定是的特征向量.√與有相同的特征值,但特征向量不一定相同.與相似(為可逆矩陣)記為:與正交相似(為正交矩陣)可以相似對角化
2024-10-08 16:40
【摘要】第三章向量題型歸納及思路提示
2025-01-12 22:10
【摘要】線代框架之二次型1.定義:二次型1211(,,,)nnTnijijijfxxxxAxaxx??????(其中ijjiaa?,即A為對稱矩陣,12(,,,)Tnxxxx?)。只含平方項的二次型稱為二次型的標(biāo)準(zhǔn)形(此時二次型的矩陣為對角矩陣)12(,,,)TnfxxxxA
【摘要】第一篇:線性代數(shù)概念總結(jié) 每一個m×n矩陣總可經(jīng)過有限次初等行變換化成行階梯陣與行簡化階梯陣,且行階梯陣中的非零行數(shù)是唯一確定的,行簡化階梯陣也是唯一確定的。 初等矩陣都是可逆的。且初等矩陣的逆矩...
2024-11-05 02:09
【摘要】收集自網(wǎng)絡(luò),不以任何盈利為目的。歡迎考研的同學(xué),下載學(xué)習(xí)。線性代數(shù)講義目錄第一講基本概念線性方程組矩陣與向量初等變換和階梯形矩陣線性方程組的矩陣消元法第二講行列式完全展開式化零降階法其它性質(zhì)克萊姆法則第三講矩陣乘法乘積矩陣的列向量和行向量矩陣分解矩陣
2025-04-13 02:54
【摘要】線性代數(shù)歷年考研試題精解一、填空題 1.(1987—Ⅰ,Ⅱ)已知三維線性空間的一組基底為,則向量在上述基底下的坐標(biāo)是. 【考點】向量在基下的坐標(biāo). 解方法一:設(shè),得方程組解得. 方法二:,解矩陣方程得. 【注意】行(列)向量組由行(列)向量組線性表示的矩陣表達(dá)式的形式是不同的. 2.(1988—Ⅰ,Ⅱ)設(shè)矩陣,其中均為4維列向量,且已知行列式,則行
2025-03-31 07:05
【摘要】.行列式的定義和性質(zhì)1.余子式和代數(shù)余子式的定義例1行列式第二行第一列元素的代數(shù)余子式( ?。〢. B.C. D.測試點余子式和代數(shù)余子式的概念解析,答案B2.行列式按一行或一列展開的公式1)2)例2設(shè)某階行列式的第二行元素分別為對應(yīng)的余子式分別為則此行列式的值為.測試點行列式按
2025-03-29 12:11