【摘要】......導(dǎo)數(shù)-雙變量問題—雙變單構(gòu)造函數(shù)利用單調(diào)性證明形式如:方法:將相同變量移到一邊,構(gòu)造函數(shù)1.已知函數(shù)對任意,不等式恒成立,試求m的取值范圍。,如果對,有,求實數(shù)的取值范圍.
2025-03-31 00:40
【摘要】參變量函數(shù)的導(dǎo)數(shù)一、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù).,)()(定的函數(shù)稱此為由參數(shù)方程所確間的函數(shù)關(guān)系與確定若參數(shù)方程xytytx???????例如?????,,22tytx2xt?消去參數(shù)22)2(xty???42x?xy21???
2025-07-24 14:25
【摘要】16.已知的導(dǎo)函數(shù)為,當(dāng)>0時,>,且。若存在使=,求的值。構(gòu)造函數(shù)解決導(dǎo)數(shù)問題變式:已知、都是定義在R上的函數(shù),且滿足以下條件①>0,。②。③>。若。求:關(guān)于的不等式>1的解集。導(dǎo)數(shù)的常見構(gòu)造1.對于,構(gòu)造遇到,即導(dǎo)函數(shù)大于某種非零常數(shù)(若a=0,則無需構(gòu)造),則可構(gòu)
2025-03-31 04:37
【摘要】構(gòu)造輔助函數(shù)求解導(dǎo)數(shù)問題對于證明與函數(shù)有關(guān)的不等式,或已知不等式在某個范圍內(nèi)恒成立求參數(shù)取值范圍、討論一些方程解的個數(shù)等類型問題時,常常需要構(gòu)造輔助函數(shù),并求導(dǎo)研究其單調(diào)性或?qū)で笃鋷缀我饬x來解決;題目本身特點不同,所構(gòu)造的函數(shù)可有多種形式,解題的繁簡程度也因此而不同,這里是幾種常用的構(gòu)造技巧.技法一:“比較法”構(gòu)造函數(shù)[典例] (2017·廣州模擬)已知函數(shù)f(x)=e
【摘要】第一篇:構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式 湖北省天門中學(xué)薛德斌2010年10月 例 1、設(shè)當(dāng)x?[a,b]時,f/(x)g/(x),求證:當(dāng)x?[a,b]時,f(x...
2024-10-26 21:14
【摘要】第一篇:構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 摘要:運用導(dǎo)數(shù)法證明不等式首先要構(gòu)建函數(shù),以函數(shù)作為載體可以用移項作差,直接構(gòu)造;合理變形,等價構(gòu)造;分析(條件)結(jié)論,特征構(gòu)造...
2024-10-28 05:32
【摘要】第八章第三節(jié)機(jī)動目錄上頁下頁返回結(jié)束二、多變量函數(shù)的偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)多變量函數(shù)的微分和偏導(dǎo)數(shù)第八章一、多變量函數(shù)的微分一、多變量函數(shù)的微分定義設(shè)在的鄰域中有定義,
2025-07-31 18:36
【摘要】構(gòu)造函數(shù)解不等式1.(2015全國2理科).設(shè)函數(shù)f’(x)是奇函數(shù)的導(dǎo)函數(shù),f(-1)=0,當(dāng)時,,則使得成立的x的取值范圍是(A)(B)(C)(D)2若定義在上的函數(shù)是奇函數(shù),,當(dāng)>0時,<0,恒成立,則不等式>0的解集ABCD.3定義在上的函數(shù)滿足:則不等式(其中為自然對數(shù)的底數(shù))的解集為(
2025-06-26 04:07
【摘要】利用導(dǎo)數(shù)構(gòu)造函數(shù)回顧(1)[f(x)±g(x)]′=__________;(2)[f(x)g(x)]′=______________;(3)′=______________[g(x)≠0].構(gòu)造函數(shù)1.對于,構(gòu)造更一般地,遇到,即導(dǎo)函數(shù)大于某種非零常數(shù)(若a=0,則無需構(gòu)造),則可構(gòu)2.對于,構(gòu)造3.對于,構(gòu)造4.對于[或]
2025-06-30 08:14
【摘要】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(學(xué)生版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2024-10-26 15:00
【摘要】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2024-11-29 01:21
【摘要】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點解析
2024-11-19 02:10
2024-08-18 05:46
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)1.知識與技能結(jié)合函數(shù)的圖象,了解函數(shù)在某點取得極值的必要條件和充分條件.2.過程與方法會用導(dǎo)數(shù)求不超過三次的多項
2024-10-25 11:51
【摘要】二、高階導(dǎo)數(shù)的運算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機(jī)動目錄上頁下頁返回
2025-05-20 21:33