【摘要】1橢圓、雙曲線、拋物線綜合習(xí)題專題學(xué)案考點(diǎn)一:圓錐曲線標(biāo)準(zhǔn)方程22412xy?=-1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為__________________22221xy??有公共焦點(diǎn),離心率互為倒數(shù)的橢圓方程為__________________22135xykk????表示焦點(diǎn)在x軸上的橢圓,則k的取值范圍是_______
2025-01-15 16:10
【摘要】八、圓錐曲線:(1)第一定義中要重視“括號(hào)”內(nèi)的限制條件:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對(duì)值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對(duì)值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕
2025-06-22 19:49
【摘要】......橢圓和雙曲線綜合練習(xí)卷1.設(shè)橢圓,雙曲線,(其中)的離心率分別為,則()A.B.C.D.與1大小不確定【答案】,,所以,故選B.2.已知雙曲線的左焦點(diǎn)為,過點(diǎn)作雙曲線的一
2025-07-05 13:59
【摘要】橢圓與雙曲線常見題型歸納一.“曲線方程+直線與圓錐曲線位置關(guān)系”的綜合型試題的分類求解,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn)。(Ⅰ)寫出的方程;(Ⅱ)若,求的值。例1.解:(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以為焦點(diǎn),長(zhǎng)半軸為2的橢圓.它的短半軸,故曲線C的方程為.(Ⅱ)設(shè),其坐標(biāo)滿足消去y并整理得,
2024-08-17 17:29
【摘要】......圓錐曲線測(cè)試題一、選擇題(共12題,每題5分)1已知橢圓的兩個(gè)焦點(diǎn)為、,且,弦AB過點(diǎn),則△的周長(zhǎng)為()(A)10(B)20(C)2(D)2橢圓上的點(diǎn)P到它的左準(zhǔn)線的距離是10,
2025-06-30 23:31
【摘要】......橢圓雙曲線的經(jīng)典結(jié)論一、橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).
2025-06-26 08:50
【摘要】......圓錐曲線習(xí)題——雙曲線1.如果雙曲線=1上一點(diǎn)P到雙曲線右焦點(diǎn)的距離是2,那么點(diǎn)P到y(tǒng)軸的距離是()(A) (B) (C) (D)2.已知雙曲線C∶>0,b>0),以C的右焦點(diǎn)為圓心且與C的漸近線相切的圓的半
2025-06-29 15:22
【摘要】北師大版選修2-1第三章橢圓與雙曲線的離心率1、教材分析本節(jié)課是北師大版高中數(shù)學(xué)選修2-1第三章小專題橢圓與雙曲線的離心率。橢圓與雙曲線的離心率是本章的重點(diǎn)內(nèi)容,在學(xué)習(xí)本節(jié)知識(shí)前,學(xué)生已經(jīng)了解橢圓與雙曲線的概念、方程、基本性質(zhì)。求解橢圓、雙曲線的離心率是重點(diǎn)內(nèi)容。靈活運(yùn)用求解橢圓、雙曲線的離心率得幾種常用方法是本節(jié)的難點(diǎn)。2、學(xué)情分析本節(jié)是圓錐曲線與方程這
2025-04-23 04:22
【摘要】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)12,FF的距離的差的絕對(duì)值等于常數(shù)(小于12FF)的點(diǎn)的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個(gè)定點(diǎn)12,FF的距離的和等于常數(shù)(大于12FF)的點(diǎn)的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-17 00:53
【摘要】標(biāo)準(zhǔn)方程? 范圍?|x|≤a,|y|≤b對(duì)稱性?關(guān)于x軸、y軸成軸對(duì)稱;關(guān)于原點(diǎn)成中心對(duì)稱頂點(diǎn)坐標(biāo)?(a,0)、(-a,0)、(0,b)、(0,-b)焦點(diǎn)坐標(biāo)?(c,0)、(-c,0)半軸長(zhǎng)?長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b.ab離心率?
2025-07-21 02:40
【摘要】......橢圓知識(shí)點(diǎn)【知識(shí)點(diǎn)1】橢圓的概念:在平面內(nèi)到兩定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓.這兩定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距.當(dāng)動(dòng)點(diǎn)設(shè)為M時(shí),橢圓即為點(diǎn)集
2025-06-26 08:24
【摘要】橢圓與雙曲線的對(duì)偶性質(zhì)100條橢圓1.2.標(biāo)準(zhǔn)方程:3.4.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.5.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).6.以焦點(diǎn)弦PQ為直徑的圓必與對(duì)應(yīng)準(zhǔn)線相離.7.以焦點(diǎn)半徑PF1為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切.8.設(shè)A1、A2為橢圓的左、右
2024-08-17 17:12
【摘要】......橢圓與雙曲線的必背的經(jīng)典結(jié)論橢圓1.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的外角.2.PT平分△PF1F2在點(diǎn)P處的外角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端
2025-06-26 08:28
【摘要】橢圓與雙曲線中點(diǎn)弦斜率公式及其推論尤溪文公高級(jí)中學(xué)鄭明淮,.定理1(橢圓中點(diǎn)弦的斜率公式):設(shè)為橢圓弦(不平行軸)的中點(diǎn),則有:證明:設(shè),,則有,兩式相減得:整理得:,即,因?yàn)槭窍业闹悬c(diǎn),所以,所以定理2(雙曲線中點(diǎn)弦的斜率公式):設(shè)為雙曲線弦(不平行軸)的中點(diǎn),則有證明:設(shè),,則有,兩式相減得:整理得:,即,因?yàn)槭窍业闹悬c(diǎn),所以,所以例1、已知橢圓
【摘要】?jī)啥c(diǎn)F1、F2(|F1F2|=2c)和的距離的等于常數(shù)2a(2a|F1F2|=2c0)的點(diǎn)的軌跡.平面內(nèi)與1.橢圓的定義2.雙曲線的定義平面內(nèi)與兩定點(diǎn)F1、F2(|F1F2|=2c)的距離的差的絕對(duì)值等于常數(shù)2a(2a|F1F2|=2c0)?的點(diǎn)軌跡
2024-12-02 16:52