freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)排列組合經(jīng)典題型全面總結(jié)版-文庫吧資料

2025-04-10 05:12本頁面
  

【正文】 2},C={1,3,4},從這三個集合中各取一個元素構(gòu)成空間直角坐標(biāo)系中點的坐標(biāo),則確定的不同點的個數(shù)為(  )A.33 B.34 C.35 D.36 [解析]?、偎每臻g直角坐標(biāo)系中的點的坐標(biāo)中不含1的有C典型例題四例4 某一天的課程表要排入政治、語文、數(shù)學(xué)、物理、體育、美術(shù)共六節(jié)課,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學(xué),那么共有多少種不同的排課程表的方法.分析與解法1:6六門課總的排法是,其中不符合要求的可分為:體育排在第一書有種排法,如圖中Ⅰ;數(shù)學(xué)排在最后一節(jié)有種排法,如圖中Ⅱ;但這兩種排法,都包括體育排在第一書數(shù)學(xué)排在最后一節(jié),如圖中Ⅲ,這種情況有種排法,因此符合條件的排法應(yīng)是: (種). 分析與解法2:根據(jù)要求,課程表安排可分為4種情況: (1)體育、數(shù)學(xué)既不排在第一節(jié)也不排在最后一節(jié),這種排法有種; (2)數(shù)學(xué)排在第一節(jié)但體育不排在最后一節(jié),有排法種; (3)體育排在最后一節(jié)但數(shù)學(xué)不排在第一節(jié),有排法種; (4)數(shù)學(xué)排在第一節(jié),體育排在最后一節(jié),有排法 這四類排法并列,不重復(fù)也不遺漏,故總的排法有: (種). 分析與解法3:根據(jù)要求,課表安排還可分下述4種情況: (1)體育,數(shù)學(xué)既不在最后也不在開頭一節(jié),有種排法; (2)數(shù)學(xué)排在第一節(jié),體育不排在最后一節(jié),有4種排法; (3)體育在最后一書,數(shù)學(xué)木在第一節(jié)有4種排法; (4)數(shù)學(xué)在第一節(jié),體育在最后一節(jié)有1種排法. 上述 21種排法確定以后,僅剩余下四門課程排法是種,故總排法數(shù)為(種). 下面再提出一個問題,請予解答. 問題:有6個人排隊,甲不在排頭,乙不在排尾,問并肩多少種不同的排法. 請讀者完成此題. 說明:解答排列、組合問題要注意一題多解的練習(xí),不僅能提高解題能力,而且是檢驗所解答問題正確與否的行之有效的方法.典型例題五例5 現(xiàn)有輛公交車、位司機(jī)和位售票員,每輛車上需配位司機(jī)和位售票員.問車輛、司機(jī)、售票員搭配方案一共有多少種?分析:可以把輛車看成排了順序的三個空:,然后把名司機(jī)和名售票員分別填入.因此可認(rèn)為事件分兩步完成,每一步都是一個排列問題.解:分兩步完成.第一步,把名司機(jī)安排到輛車中,有種安排方法;第二步把名售票員安排到輛車中,有種安排方法.故搭配方案共有種.說明:許多復(fù)雜的排列問題,不可能一步就能完成.而應(yīng)分解開來考慮:即經(jīng)適當(dāng)?shù)胤诸惓煞只蚍植街?,?yīng)用分類計數(shù)原理、分步計數(shù)原理原理去解決.在分類或分步時,要盡量把整個事件的安排過程考慮清楚,防止分類或分步的混亂.典型例題六例6 下是表是高考第一批錄取的一份志愿表.如果有所重點院校,每所院校有個專業(yè)是你較為滿意的選擇.若表格填滿且規(guī)定學(xué)校沒有重復(fù),同一學(xué)校的專業(yè)也沒有重復(fù)的話,你將有多少種不同的填表方法?分析:填寫學(xué)校時是有順序的,因為這涉及到第一志愿、第二志愿、第三志愿的問題;同一學(xué)校的兩個專業(yè)也有順序,要區(qū)分出第一專業(yè)和第二專業(yè).因此這是一個排列問題.解:填表過程可分兩步.第一步,確定填報學(xué)校及其順序,則在所學(xué)校中選出所并加排列,共有種不同的排法;第二步,從每所院校的個專業(yè)中選出個專業(yè)并確定其順序,其中又包含三小步,因此總的排列數(shù)有種.綜合以上兩步,由分步計數(shù)原理得不同的填表方法有:種.說明:要完成的事件與元素的排列順序是否有關(guān),有時題中并未直接點明,需要根據(jù)實際情景自己判斷,特別是學(xué)習(xí)了后面的“組合”之后這一點尤其重要.“選而且排”(元素之間有順序要求)的是排列,“選而不排”(元素之間無順序要求)的是組合.另外,較復(fù)雜的事件應(yīng)分解開考慮.典型例題七例5 名同學(xué)排隊照相.(1)若分成兩排照,前排人,后排人,有多少種不同的排法?(2)若排成兩排照,前排人,后排人,但其中甲必須在前排,乙必須在后排,有多少種不同的排法?(3)若排成一排照,甲、乙、丙三人必須相鄰,有多少種不同的排法?(4)若排成一排照,人中有名男生,名女生,女生不能相鄰,有多少種不面的排法?分析:(1)可分兩步完成:第一步,從人中選出人排在前排,有種排法;第二步,剩下的人排在后排,有種排法,故一共有種排法.事實上排兩排與排成一排一樣,只不過把第個位子看成第二排而已,排法總數(shù)都是,相當(dāng)于個人的全排列.(2)優(yōu)先安排甲、乙.(3)用“捆綁法”.(4)用“插空法”.解:(1) 種.(2)第一步安排甲,有種排法;第二步安排乙,有種排法;第三步余下的人排在剩下的個位置上,有種排法,由分步計數(shù)原理得,符合要求的排法共有種.(3)第一步,將甲、乙、丙視為一個元素,有其余個元素排成一排,即看成個元素的全排列問題,有種排法;第二步,甲、乙、丙三人內(nèi)部全排列,有種排法.由分步計數(shù)原理得,共有種排法.(4)第一步,名男生全排列,有種排法;第二步,女生插空,即將名女生插入名男生之間的個空位,這樣可保證女生不相鄰,易知有種插入方法.由分步計數(shù)原理得,符合條件的排法共有:種.說明:(1)相鄰問題用“捆綁法”,即把若干個相鄰的特殊元素“捆綁”為一個“大元素”,與其他普通元素全排列;最后再“松綁”,將這些特殊元素進(jìn)行全排列.(2)不相鄰問題用“插空法”,即先安排好沒有限制條件的元素,然后再將有限制條件的元素按要求插入排好的元素之間.典型例題八例8 從五個數(shù)字中每次取出三個不同的數(shù)字組成三位數(shù),求所有三位數(shù)的和.分析:可以從每個數(shù)字出現(xiàn)的次數(shù)來分析,例如“”,當(dāng)它位于個位時,即形如的數(shù)共有個(從四個數(shù)中選兩個填入前面的兩個空),當(dāng)這些數(shù)相加時,由“”所產(chǎn)生的和是.當(dāng)位于十位時,即形如的數(shù)也有,那么當(dāng)這些數(shù)相加時,由“”產(chǎn)生的和應(yīng)是.當(dāng)位于面位時,可同理分析.然后再依次分析的情況.解:形如的數(shù)共有個,當(dāng)這些數(shù)相加時,由“”產(chǎn)生的和是;形如的數(shù)也有個,當(dāng)這些數(shù)相加時,由“”產(chǎn)生的和是;形如的數(shù)也有個,當(dāng)這些數(shù)相加時,由“”產(chǎn)生的和應(yīng)是.這樣在所有三位數(shù)的和中,由“”產(chǎn)生的和是.同理由產(chǎn)生的和分別是,因此所有三位數(shù)的和是.說明:類似于這種求“數(shù)字之和”的問題都可以用分析數(shù)字出現(xiàn)次數(shù)的辦法來解決.如“由四個數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù),若所有這些四位數(shù)的各數(shù)位上的數(shù)字之和為,求數(shù)”.本題的特殊性在于,由于是全排列,每個數(shù)字都要選用,故每個數(shù)字均出現(xiàn)了次,故有,得.典型例題九例9 計算下列各題:(1) ;  (2) ;  (3) ;(4)   (5) 解:(1) ;(2) 。否則,若先排個數(shù)較多的元素,再讓其余元素插空排時,往往個數(shù)較多的元素有相鄰情況。所以歌唱節(jié)目與舞蹈節(jié)目間隔排列的排法有:=2880種方法。(D)誤解:除了甲、乙、丙三人以外的5人先排,有種排法,5人排好后產(chǎn)生6個空檔,插入甲、乙、丙三人有種方法,這樣共有種排法,選A.錯因分析:誤解中沒有理解“甲、乙、丙三人不能相鄰”的含義,得到的結(jié)果是“甲、乙、丙三人互不相鄰”的情況.“甲、乙、丙三人不能相鄰”是指甲、乙、丙三人不能同時相鄰,但允許其中有兩人相鄰.正解:在8個人全排列的方法數(shù)中減去甲、乙、丙全相鄰的方法數(shù),就得到甲、乙、丙三人不相鄰的方法數(shù),即,故選B.8解題策略的選擇不當(dāng)出錯例10 高三年級的三個班到甲、乙、丙、丁四個工廠進(jìn)行社會實踐,其中工廠甲必須有班級去,每班去何工廠可自由選擇,則不同的分配方案有( ).(A)16種 (B)18種 (C)37種 (D)48種誤解:甲工廠先派一個班去,有3種選派方法,剩下的2個班均有4種選擇,這樣共有種方案.錯因分析::班先派去了甲工廠,班選擇時也去了甲工廠,這與班先派去了甲工廠,班選擇時也去了甲工廠是同一種情況,而在上述解法中當(dāng)作了不一樣的情況,并且這種重復(fù)很難排除.正解:,再扣除甲工廠無人去的情況,即:種方案.(二)典型例題講解例1 用0到9這10 個數(shù)字.可組成多少個沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0、從限制條件入手,可劃分如下: 如果從個位數(shù)入手,四位偶數(shù)可分為:個位數(shù)是“0”的四位偶做,個位數(shù)是8的四位偶數(shù)(這是因為零不能放在千位數(shù)上).由此解法一與二. 如果從千位數(shù)入手.四位偶數(shù)可分為:千位數(shù)是9和千位數(shù)是8兩類,由此得解法三. 如果四位數(shù)劃分為四位奇數(shù)和四位偶數(shù)兩類,先求出四位個數(shù)的個數(shù),用排除法,得解法四. 解法1:當(dāng)個位數(shù)上排“0”時,千位,百位,十位上可以從余下的九個數(shù)字中任選3個來排列,故有個; 當(dāng)個位上在“8”中任選一個來排,則千位上從余下的八個非零數(shù)字中任選一個,百位,十位上再從余下的八個數(shù)字中任選兩個來排,按乘法原理有(個). ∴ 沒有重復(fù)數(shù)字的四位偶數(shù)有 個. 解法2:當(dāng)個位數(shù)上排“0”時,同解一有個;當(dāng)個位數(shù)上排8中之一時,千位,百位,十位上可從余下9個數(shù)字中任選3個的排列數(shù)中減去千位數(shù)是“0”排列數(shù)得:個 ∴ 沒有重復(fù)數(shù)字的四位偶數(shù)有 個. 解法3:千位數(shù)上從9中任選一個,個位數(shù)上從0、8中任選一個,百位,十位上從余下的八個數(shù)字中任選兩個作排列有 個干位上從8中任選一個,個位數(shù)上從余下的四個偶數(shù)中任意選一個(包括0在內(nèi)),百位,十位從余下的八個數(shù)字中任意選兩個作排列,有個 ∴ 沒有重復(fù)數(shù)字的四位偶數(shù)有 個. 解法4:將沒有重復(fù)數(shù)字的四位數(shù)字劃分為兩類:四位奇數(shù)和四位偶數(shù). 沒有重復(fù)數(shù)字的四位數(shù)有個.其中四位奇數(shù)有個∴ 沒有重復(fù)數(shù)字的四位偶數(shù)有個說明:這是典型的簡單具有限制條件的排列問題,上述四種解法是基本、常見的解法、要認(rèn)真體會每種解法的實質(zhì),掌握其解答方法,以期靈活運(yùn)用.典型例題二例2 三個女生和五個男生排成一排 (1)如果女生必須全排在一起,可有多少種不同的排法? (2)如果女生必須全分開,可有多少種不同的排法? (3)如果兩端都不能排女生,可有多少種不同的排法? (4)如果兩端不能都排女生,可有多少種不同的排法?解:(1)(捆綁法)因為三個女生必須排在一起,所以可以先把她們看成一個整體,這樣同五個男生合一起共有六個元素,然成一排有種不同排法.對于其中的每一種排法,三個女生之間又都有對種不同的排法,因此共有種不同的排法. (2)(插空法)要保證女生全分開,可先把五個男生排好,每兩個相鄰的男生之間留出一個空檔.這樣共有4個空檔,加上兩邊兩個男生外側(cè)的兩個位置,共有六個位置,再把三個女生插入這六個位置中,只要保證每個位置至多插入一個女生,就能保證任意兩個女生都不相鄰.由于五個男生排成一排有種不同排法,對于其中任意一種排法,從上述六個位置中選出三個來讓三個女生插入都有種方法,因此共有種不同的排法. (3)解法1:(位置分析法)因為兩端不能排女生,所以兩端只能挑選5個男生中的2個,有種不同的排法,對于其中的任意一種排法,其余六位都有種排法,所以共有種不同的排法. 解法2:(間接法)3個女生和5個男生排成一排共有種不同的排法,從中扣除女生排在首位的種排法和女生排在末位的種排法,但這樣兩端都是女生的排法在扣除女生排在首位的情況時被扣去一次,在扣除女生排在未位的情況時又被扣去一次,所以還需加一次回來,由于兩端都是女生有種不同的排法,所以共有種不同的排法.解法3:(元素分析法)從中間6個位置中挑選出3個來讓3個女生排入,有種不同的排法,對于其中的任意一種排活,其余5個位置又都有種不同的排法,所以共有種不同的排法,(4)解法1:因為只要求兩端不都排女生,所以如果首位排了男生,則未位就不再受條件限制了,這樣可有種不同的排法;如果首位排女生,有種排法,這時末位就只能排男生,有種排法,首末兩端任意排定一種情況后,其余6位都有種不同的排法,這樣可有種不同排法.因此共有種不同的排法.解法2:3個女生和5個男生排成一排有種排法,從中扣去兩端都是女生排法種,就能得到兩端不都是女生的排法種數(shù).因此共有種不同的排法. 說明:解決排列、組合(下面將學(xué)到,由于規(guī)律相同,順便提及,以下遇到也同樣處理)應(yīng)用問題最常用也是最基本的方法是位置分析法和元素分析法.若以位置為主,需先滿足特殊位置的要求,再處理其它位置,有兩個以上約束條件,往往是考慮一個約束條件的同時要兼顧其它條件.若以元素為主,需先滿足特殊元素要求再處理其它的元素. 間接法有的也稱做排除法或排異法,有時用這種方法解決問題來得簡單、明快. 捆綁法、插入法對于有的問題確是適用的好方法,要認(rèn)真搞清在什么條件下使用.典型例題三例3 排一張有5個歌唱節(jié)目和4個舞蹈節(jié)目的演出節(jié)目單。 正解:由分析,共有個解集不同的一元二次方程.6未考慮特殊情況出錯在排列組合中要特別注意一些特殊情況,一有疏漏就會出錯.例9 現(xiàn)有1角、2角、5角、1元、2元、5元、10元、50元人民幣各一張,100元人民幣2張,從中至少取一張,共可組成不同的幣值種數(shù)是( )(A)1024種 (B)1023種 (C)1536種 (D)1535種誤:因為共有人民幣10張,每張人民幣都有取和不取2種情況,減去全不取的1種情況,共有種.錯因分析:這里100元面值比較特殊有兩張,在誤解中被計算成 4 種情況,實際上只有不取、取一張和取二張3種情況.正解:除100元人民幣以外每張均有取和不取2種情況,100元人民幣的取法有3種情況,再減去全不取的1種情況,所以共有種.7題意的理解偏差出錯 例10 現(xiàn)有8個人排成一排照相,其中有甲、乙、丙三人不能相鄰的排法有( )種.(A)例6 用數(shù)字0,1,2
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1