【摘要】韋達(dá)定理的應(yīng)用一、典型例題例1:已知關(guān)于x的方程2x-(m+1)x+1-m=0的一個根為4,求另一個根。解:設(shè)另一個根為x1,則相加,得x 例2:已知方程x-5x+8=0的兩根為x1,x2,求作一個新的一元二次方程,使它的兩根分別為和.解:∵又∴代入得,∴新方程為例3:判斷是不是方程9x-10
2025-07-05 18:05
【摘要】韋達(dá)定理及方程解的應(yīng)用一、選擇題1.若x=﹣2是關(guān)于x的一元二次方程的一個根,則a的值為()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或42.如果a、b是方程x2-3x+1=0的兩根,那么代數(shù)式a2+2b2-3b的值為()B.-6D.-73.方程有兩個實數(shù)根
2025-08-11 16:37
【摘要】解一元二次方程(3)公式法解一元二次方程推導(dǎo)ax2+bx+c=0x2++=0x2+=-x2++=-+(x+)2=x=根的判別式(b2-4ac)方程有兩個不相等的實數(shù)根.方程有兩個相等的實數(shù)根(或說方程有一個實數(shù)根).方程沒有實數(shù)根.例:關(guān)于的一元二次方程有實
2025-07-01 17:13
【摘要】【標(biāo)題】韋達(dá)定理在中學(xué)數(shù)學(xué)中的應(yīng)用【作者】袁孟俊【關(guān)鍵詞】韋達(dá)定理方程代數(shù)三角問題解析幾何【指導(dǎo)老師】秦小二【專業(yè)】數(shù)學(xué)教育【正文】1引言韋達(dá)(Viete,F(xiàn)rancois,seigneurdeLaBigotiere)是法國十六世紀(jì)最有影響的數(shù)學(xué)家之
2024-12-12 07:53
【摘要】一元二次方程根與系數(shù)的關(guān)系習(xí)題1、如果方程的兩根是、,那么=,=。2、已知、是方程的兩個根,那么:=;=;;;;=。3、以2和3為根的一元二次方程(二次項系數(shù)為1)是。
2025-08-01 11:16
【摘要】韋達(dá)定理及其應(yīng)用(一)如果方程ax2+bx+c=0(a≠0)的兩根為x1、x2,則x1+x2=-ba,x1·x2=ca.如果方程x2+px+q=0(a≠0)的兩根為x1、x2,則-px1+x2=x1·x2=q,.以x1、x2為根的一元二次方程(二次項系數(shù)為
2024-11-27 12:02
【摘要】九年級一元二次方程(知識點詳解)一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理)知識點及應(yīng)用解析1、定義:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩個根,則有x1+x2=-,x1·x2=。對于二次項系數(shù)為1的一元二次方程x2+px+q=0,則有x1+x2=-p,x1·x2=q2、應(yīng)用的前提條件:根的判別式△≥0方程有實數(shù)根
2025-06-29 01:43
【摘要】
2025-06-29 00:35
【摘要】韋達(dá)定理執(zhí)教人:丁敏敏解下列一元二次方程(1)x2-7x+12=0;(2)2x2+3x-2=0解:(x-3)(x-4)=0x+x2=7x1·x2=12解:(2x-1)(x+2)=0x1+x2=-3/2x1·x2=-1x1=3,x2=4
2024-11-18 01:11
【摘要】一元二次方程根與系數(shù)的關(guān)系一元二次方程x2-12x+11=02x2-3x=04x2+4x+1=0猜想:x1,x2x1+x2x1?x21211-1學(xué)習(xí)主題:求根,觀察、歸納、猜想x1=1,x2=110x1+x2=x1·x2=觀察,一元二次方程的兩根之和與那些項的系數(shù)有關(guān)?兩根之積與那些項的系數(shù)
2025-08-11 17:28
【摘要】1、如果關(guān)于的方程的兩根之差為2,那么???????????。?2、已知關(guān)于的一元二次方程兩根互為倒數(shù),則??????。?3、已知關(guān)于的方程的兩根為,且,則??
2025-04-01 05:21
【摘要】2020年中考攻略專題4韋達(dá)定理應(yīng)用探討韋達(dá),1540年出生于法國的波亞圖,早年學(xué)習(xí)法律,但他對數(shù)學(xué)有濃厚的興趣,常利用業(yè)余時間鉆研數(shù)學(xué)。韋達(dá)第一個有意識地和系統(tǒng)地使用字母來表示已知數(shù)、未知數(shù)及其乘冪,帶來了代數(shù)學(xué)理論研究的重大進(jìn)步。韋達(dá)討論了方程根的各種有理變換,發(fā)現(xiàn)了方程根與系數(shù)之間的關(guān)系(所以人們把敘述一元二次方程根與系數(shù)關(guān)系的結(jié)論稱為“韋達(dá)定理”
2024-08-29 19:56
【摘要】1“點差法”在解析幾何題中的應(yīng)用在處理直線與圓錐曲線相交形成的弦中點的有關(guān)問題時,我們經(jīng)常用到如下解法:設(shè)弦的兩個端點坐標(biāo)分別為????1122,,xyxy、,代入圓錐曲線得兩方程后相減,得到弦中點坐標(biāo)與弦所在直線斜率的關(guān)系,然后加以求解,這即為“點差法”,此法有著不可忽視的作用,其特點是巧代斜率.本文列舉數(shù)例,以供參考.1求弦
2025-01-15 16:58
【摘要】本科畢業(yè)論文題目:韋達(dá)定理的推廣及若干應(yīng)用院系:數(shù)學(xué)與信息科學(xué)學(xué)院專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)姓名:張金顯
2025-05-27 00:48
【摘要】成都戴是中考高考學(xué)校峨眉校區(qū)初三周老師一元二次方程知識網(wǎng)絡(luò)結(jié)構(gòu)圖定義:等號兩邊都是整式,只含有一個未知數(shù)(一元),未知數(shù)的最高次數(shù)是2(二次)的方程為一元二次方程直接開平方法因式分解法配方法公式法解法(降次)一元二次方程應(yīng)用一元二次方程解決實際問題1