【摘要】空間幾何體題型與方法歸納(文科)考點一證明空間線面平行與垂直1、如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,點D是AB的中點,(I)求證:AC⊥BC1;(II)求證:AC1//平面CDB1;解析:(1)證明線線垂直方法有兩類:一是通過三垂線定理或逆定理證明,二是通過線面垂直來證明線線垂直;(2)證明線面平行也有兩類:一是通過
2025-03-30 03:55
【摘要】高考文科數(shù)學(xué)立體幾何題型與方法(文科)一、考點回顧1.平面(1)平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(2)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣,可根據(jù)公理2證明這些點都在這兩個平面的
2025-01-20 15:13
【摘要】立體幾何專題復(fù)習(xí)一、【知識總結(jié)】基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-03-31 06:44
【摘要】精品資源第1-4課時課題:函數(shù)問題的題型與方法一.復(fù)習(xí)目標(biāo):1.了解映射的概念,理解函數(shù)的概念。2.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性和奇偶性的方法,并能利用函數(shù)的性質(zhì)簡化函數(shù)圖象的繪制過程。3.了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會求一些簡單函數(shù)的反函數(shù)。4.理解分數(shù)指數(shù)的概念,掌握有理指數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖
2025-03-31 06:46
【摘要】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個平面.2)直線和平面平行性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個平面內(nèi)有兩條
2024-12-25 02:37
【摘要】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-31 03:14
【摘要】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時,注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【摘要】幾何學(xué)的簡潔美卻又正是幾何學(xué)之所以完美的核心所在--牛頓從航空測繪到土木建筑以至家居裝潢,--空間圖形與我們的生活息息相關(guān)。空間幾何體是由哪些基本幾何體組成的?如何描述和刻畫這些幾何體的形狀和大小的?構(gòu)成這些幾何體的基本元素之間具有怎樣的位置關(guān)系?1.1.1棱柱、棱錐、棱臺空間幾何體(一)棱柱的概念
2024-11-25 06:57
【摘要】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第1課時)教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握平面的基本性質(zhì);理解三個公理,掌握“文字語言”、“符號語言”、“圖形語言”三種語言之間的轉(zhuǎn)化;能利用公理及推論找出兩個平面的交線及有關(guān)“三線共點”、“三點共線”、“點線共面”問題的簡單證明。一、基礎(chǔ)訓(xùn)練:1、若三個平面把空間分成6個部分,那么這三個平
2024-11-27 23:14
【摘要】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第3課時)教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握直線與平面垂直的判定定理及性質(zhì)定理、平面與平面垂直的判定定理及性質(zhì)定理。能抓住線線垂直、線面垂直、面面垂直之間的轉(zhuǎn)化關(guān)系解決有關(guān)垂直問題;會求簡單的二面角的平面角問題。注重滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想一、基礎(chǔ)訓(xùn)練:1、若直線a與平面?不垂直,那么在平面
【摘要】精品資源第36-40課時參數(shù)取值問題的題型與方法要點綜述:本講從對歷年高考題的剖析來領(lǐng)會分類討論思想方法,發(fā)展數(shù)學(xué)思維,,在中學(xué)數(shù)學(xué)里比比皆是,這一講,我們先展示2004年高考中參數(shù)取值問題的試題,再分四個方面來探討。(Ⅰ)2004年參數(shù)取值問題綜合題選1.(2004年高考上海卷理科(19))記函數(shù)f(x)=的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a&
2025-03-31 06:47
【摘要】精品資源第25-29課時概率與統(tǒng)計問題的題型與方法一.復(fù)習(xí)目標(biāo):1.了解典型分布列:0~1分布,二項分布,幾何分布。2.了解離散型隨機變量的期望值、方差的意義,會根據(jù)離散型隨機變量的分布列求出期望值、方差。3.在實際中經(jīng)常用期望來比較兩個類似事件的水平,當(dāng)水平相近時,再用方差比較兩個類似事件的穩(wěn)定程度。4.了解正態(tài)分布的意義,能借助正態(tài)曲線的圖像理解正態(tài)曲線的
【摘要】立體幾何中的軌跡問題高考數(shù)學(xué)有一類學(xué)科內(nèi)的綜合題,它們的新穎性、綜合性,值得我們重視,在知識網(wǎng)絡(luò)交匯點處設(shè)計試題是高考命題改革的一個方向,以空間問題為為背景的軌跡問題作為解析幾何與立體幾何的交匯點,由于知識點多,數(shù)學(xué)思想和方法考查充分,求解比較困難。通常要求學(xué)生有較強的空間想象能力,以及能夠把空間問題轉(zhuǎn)化到平面上,再結(jié)合解析幾何方法求解,以下精選幾個問題來對這一問題進行探討,旨在探索題型規(guī)律
2024-10-08 16:57
【摘要】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-11 18:17