【摘要】圓錐曲線專題求離心率的值師生互動(dòng)環(huán)節(jié)講課內(nèi)容:歷年高考或模擬試題關(guān)于離心率的求值問題分類精析與方法歸納點(diǎn)撥。策略一:根據(jù)定義式求離心率的值在橢圓或雙曲線中,如果能求出的值,可以直接代公式求離心率;如果不能得到ca、的值,也可以通過整體法求離心率:橢圓中;雙曲線中.ca、21a
2025-03-31 00:02
【摘要】......學(xué)習(xí)參考圓錐曲線專題求離心率的值師生互動(dòng)環(huán)節(jié)講課內(nèi)容:歷年高考或模擬試題關(guān)于離心率的求值問題分類精析與方法歸納點(diǎn)撥。策略一:根據(jù)定義式求離心率的值在橢圓或雙曲線中,如果能求出的值,可以直接代
【摘要】方法總結(jié)求解圓錐曲線離心率的取值范圍求圓錐曲線離心率的取值范圍是高考的一個(gè)熱點(diǎn),也是一個(gè)難點(diǎn),求離心率的難點(diǎn)在于如何建立不等關(guān)系定離心率的取值范圍.一、直接根據(jù)題意建立不等關(guān)系求解.例1:(2008湖南)若雙曲線(a>0,b>0)上橫坐標(biāo)為的點(diǎn)到右焦點(diǎn)的距離大于它到左準(zhǔn)線的距離,則雙曲線離心率的取值范圍是A.(1,2) B.(2,+) C.(1,5)
2024-08-18 08:31
【摘要】圓錐曲線中離心率取值范圍的求解范圍問題是數(shù)學(xué)中的一大類問題,在高考試題中占有很大的比重,圓錐曲線中離心率取值范圍問題也是高考中解析幾何試題的一個(gè)倍受青睞的考查點(diǎn),其求解策略的關(guān)鍵是建立目標(biāo)的不等式,建立不等式的方法一般有:利用曲線定義,曲線的幾何性質(zhì),題設(shè)指定條件等.策略一:利用曲線的定義例1若雙曲線橫坐標(biāo)為的點(diǎn)到右焦點(diǎn)的距離大于它到左準(zhǔn)線的距離,則雙曲線的離心率的取值范圍是
2024-08-18 04:26
【摘要】......學(xué)習(xí)參考圓錐曲線中離心率及其范圍的求解專題【高考要求】1.熟練掌握三種圓錐曲線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì),并靈活運(yùn)用它們解決相關(guān)的問題。2.掌握解析幾何中有關(guān)離心率及其范圍等問題的求解策略;3.靈
2025-03-31 00:03
【摘要】圓錐曲線內(nèi)容梳理與常見問題類型解答寧夏銀川一中張德萍圓錐曲線是高中數(shù)學(xué)的重、難點(diǎn),是每年高考的主干考點(diǎn),它包含的內(nèi)容豐富、題型多樣.表12022-2022年高考全國卷對圓錐曲線的總體考查情況題型(題號/內(nèi)容)題合計(jì)試卷所占年份考卷數(shù)
2024-08-18 04:30
【摘要】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構(gòu)建不等式xy設(shè)分別是橢圓的左、右焦點(diǎn),若在直線上存在點(diǎn)P,使線段的中垂線過點(diǎn),求橢圓離心率的取值范圍.解法一:設(shè)P,F(xiàn)1P的中點(diǎn)Q的坐標(biāo)為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因?yàn)閥2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
【摘要】麻城市第一中學(xué)圓錐曲線中的定點(diǎn)問題麻城一中王輝麻城市第一中學(xué)1.解析幾何中,定點(diǎn)問題是高考命題的一個(gè)熱點(diǎn),也是一個(gè)難點(diǎn),因?yàn)槎c(diǎn)必然是在變化中所表現(xiàn)出來的不變量,所以可運(yùn)用函數(shù)的思想方法,結(jié)合等式的恒成立求解,也就是說要與題中的可變量無關(guān)。2.求定點(diǎn)常用方法有兩種:①特殊到一般法,根據(jù)動(dòng)點(diǎn)、
2024-08-18 04:47
【摘要】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考??碱}型之一,它是在題設(shè)條件下探索某個(gè)數(shù)學(xué)對象(點(diǎn)、線、數(shù)等),解法不一,我們在平時(shí)的教學(xué)中對這類題目訓(xùn)練較少,因而學(xué)生遇到這類題目時(shí),往往感到無從下手,本文針對圓錐曲線中這類問題進(jìn)行了探討.二、經(jīng)驗(yàn)分享解決探索性問題的注意事項(xiàng)探索性問題,先假設(shè)存在,推證滿足
2025-07-31 00:14
【摘要】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個(gè)焦點(diǎn),AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
【摘要】WORD資料可編輯“圖形計(jì)算器與高中數(shù)學(xué)教學(xué)整合研究”課題教學(xué)設(shè)計(jì)案例、論文評選“類圓錐曲線”性質(zhì)的探究上海南匯中學(xué)李志鳳杰一、問題的提出學(xué)習(xí)解析幾何,我們知道曲線的圖像是圓,曲線的圖像是等軸雙曲線,而對于一般情況,曲線的圖像是什么?它們有什么
2025-04-13 07:30
【摘要】2019屆高二文科數(shù)學(xué)新課改試驗(yàn)學(xué)案(10)---圓錐曲線中的定值定點(diǎn)問題的離心率為,點(diǎn)在C上.(I)求C的方程;(II)直線l不經(jīng)過原點(diǎn)O,且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB中點(diǎn)為M,證明:直線OM的斜率與直線l的斜率乘積為定值.:過點(diǎn)A(2,0),B(0,1)兩點(diǎn).(I)求橢圓C的方程
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-07-31 00:15
【摘要】專題 圓錐曲線中的探索性問題1.(2016·課標(biāo)全國乙)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p0)于點(diǎn)P,M關(guān)于點(diǎn)P的對稱點(diǎn)為N,連接ON并延長交C于點(diǎn)H.(1)求;(2)除H以外,直線MH與C是否有其他公共點(diǎn)?說明理由.2.(2016·四川)已知橢圓E:+=1(ab&g
【摘要】雙曲線的離心率1.已知雙曲線(,)的一條漸近線方程為,則雙曲線的離心率為()2.過雙曲線的右焦點(diǎn)作一條直線,當(dāng)直線斜率為2時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線斜率為3時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),則雙曲線離心率的取值范圍為()3.過雙曲線(a>0,b>0)的左焦點(diǎn)F(﹣c,0)(c>0),作圓的切線,切點(diǎn)為E,延長FE交雙曲線右支于點(diǎn)P,若,則雙曲線的
2024-08-18 03:37