【摘要】......2017年初中數(shù)學(xué)試卷一、綜合題(共32題;共413分)1、如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個(gè)
2025-06-30 20:56
【摘要】全等三角形1.將直角三角形(∠ACB為直角)沿線段CD折疊使B落在B’處,若∠ACB’=60°,則∠ACD度數(shù)為______.2.如圖,△ABE和△ACD是△ABC分別沿著AB、AC邊翻折180°形成的,若∠BAC=150°,則∠EFC的度數(shù)為_________.3.△ABC中,∠AB
2025-07-01 04:26
【摘要】全等三角形培優(yōu)習(xí)題1、已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.(1)直接寫出線段EG與CG的數(shù)量關(guān)系;(2)將圖1中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45o,如圖2所示,取DF中點(diǎn)G,連接EG,CG.你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.(3)將圖1中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角
2025-03-30 07:39
【摘要】三角形培優(yōu)練習(xí)題1已知:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求ADADBC2已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF213已知:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBAC
【摘要】........模塊一:基本輔助線1.如圖,已知AC=BD,AD⊥AC,BC⊥BD,求證:AD=BC.2.如圖,AB=AE,∠ABC=∠AED,BC=ED,點(diǎn)F是CD的中點(diǎn),(1)求證:AF⊥CD.(2)在你連接BE后,還能得出什
2025-03-30 07:41
【摘要】本專題訓(xùn)練僅針對(duì)重慶市2010年中考第24題(策劃:衛(wèi)茂樺)全等三角形專項(xiàng)訓(xùn)練1、(2009年安順)如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連結(jié)BF。(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。2、(2009年湖州)如圖:已知在中,,為邊的中點(diǎn),過
2024-08-30 10:54
【摘要】三角形全等的判定專題訓(xùn)練題-8-1、如圖(1):AD⊥BC,垂足為D,BD=CD。求證:△ABD≌△ACD。5、如圖(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。求證:AC⊥CE。2、如圖(2):AC∥EF,AC=EF,AE=BD。求證:△ABC≌△EDF。3、如圖
2025-03-30 05:43
【摘要】全等三角形專題講解專題一全等三角形判別方法的應(yīng)用專題概說:判定兩個(gè)三角形全等的方法一般有以下4種:1.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡寫成“SSS”)2.兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(簡寫成“SAS”)3.兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡寫成“ASA”)4.兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡寫成“AAS”)而在判別
2025-06-13 15:37
【摘要】全等三角形總結(jié)A.考點(diǎn)精析、重點(diǎn)突破、學(xué)法點(diǎn)撥“全等四解”全等三角形是初中平面幾何的重要內(nèi)容,它為解決線段以及角的相等問題提供了重要工具,也為以后的學(xué)習(xí)奠定了必要的基礎(chǔ),因此要學(xué)好平面幾何,必須重視全等三角形的學(xué)習(xí).那么怎樣才能學(xué)好它呢?本文談四點(diǎn)意見,供同學(xué)們學(xué)習(xí)時(shí)參考.組成全等三角形的基本圖形大致有以下幾種:①平移型,如圖中的兩種圖形屬于平移型,它們可看
2025-04-22 23:02
【摘要】......全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造兩條邊之間的相等,兩個(gè)角之間的相等。1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點(diǎn)……作……
【摘要】智慧在這里綻放,狀元從這里起航數(shù)學(xué)思維方法講義之一年級(jí):九年級(jí)§第1講證明(三角形專題)【學(xué)習(xí)目標(biāo)】1、牢記三角形的有關(guān)性質(zhì)及其判定;2、運(yùn)用三角形的性質(zhì)及判定進(jìn)行有關(guān)計(jì)算與證明。【考點(diǎn)透視】1、全等三角形的性質(zhì)與判定;2、等腰(等邊)三角形的性質(zhì)與判定;3、直角三角形的有關(guān)性質(zhì),勾股定理及其逆定理;4
2025-08-01 08:58
【摘要】精品資源第19課三角形與全等三角形知識(shí)點(diǎn):三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點(diǎn),邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-22 12:49
【摘要】三角形、全等三角形、軸對(duì)稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂
2025-07-30 01:22
【摘要】......全等三角形判定與性質(zhì)專題訓(xùn)練一、全等三角形實(shí)際應(yīng)用問題1如圖,要測量河兩岸相對(duì)的兩
【摘要】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個(gè)三角形叫做全等三角形,全等三角形的對(duì)應(yīng)邊____,對(duì)應(yīng)角____.2.兩個(gè)三角形只有一組或兩組對(duì)應(yīng)相等的元素,這兩個(gè)三角形全等;兩個(gè)三角形有三組對(duì)應(yīng)相等的元素,這兩個(gè)三角形
2024-11-17 04:27