【摘要】三角形培優(yōu)練習題1已知:AB=4,AC=2,D是BC中點,AD是整數(shù),求ADADBC2已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213已知:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBAC
2025-07-03 20:56
【摘要】........模塊一:基本輔助線1.如圖,已知AC=BD,AD⊥AC,BC⊥BD,求證:AD=BC.2.如圖,AB=AE,∠ABC=∠AED,BC=ED,點F是CD的中點,(1)求證:AF⊥CD.(2)在你連接BE后,還能得出什
2025-04-02 07:41
【摘要】本專題訓練僅針對重慶市2010年中考第24題(策劃:衛(wèi)茂樺)全等三角形專項訓練1、(2009年安順)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連結BF。(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。2、(2009年湖州)如圖:已知在中,,為邊的中點,過
2024-09-01 10:54
【摘要】三角形全等的判定專題訓練題-8-1、如圖(1):AD⊥BC,垂足為D,BD=CD。求證:△ABD≌△ACD。5、如圖(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。求證:AC⊥CE。2、如圖(2):AC∥EF,AC=EF,AE=BD。求證:△ABC≌△EDF。3、如圖
2025-04-02 05:43
【摘要】全等三角形專題講解專題一全等三角形判別方法的應用專題概說:判定兩個三角形全等的方法一般有以下4種:1.三邊對應相等的兩個三角形全等(簡寫成“SSS”)2.兩邊和它們的夾角對應相等的兩個三角形全等(簡寫成“SAS”)3.兩角和它們的夾邊對應相等的兩個三角形全等(簡寫成“ASA”)4.兩個角和其中一個角的對邊對應相等的兩個三角形全等(簡寫成“AAS”)而在判別
2025-06-16 15:37
【摘要】全等三角形總結A.考點精析、重點突破、學法點撥“全等四解”全等三角形是初中平面幾何的重要內容,它為解決線段以及角的相等問題提供了重要工具,也為以后的學習奠定了必要的基礎,因此要學好平面幾何,必須重視全等三角形的學習.那么怎樣才能學好它呢?本文談四點意見,供同學們學習時參考.組成全等三角形的基本圖形大致有以下幾種:①平移型,如圖中的兩種圖形屬于平移型,它們可看
2025-04-25 23:02
【摘要】......全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:最主要的是構造全等三角形,構造兩條邊之間的相等,兩個角之間的相等。1、添加輔助線的方法和語言表述(1)作線段:連接……;(2)作平行線:過點……作……
2025-04-02 07:39
【摘要】智慧在這里綻放,狀元從這里起航數(shù)學思維方法講義之一年級:九年級§第1講證明(三角形專題)【學習目標】1、牢記三角形的有關性質及其判定;2、運用三角形的性質及判定進行有關計算與證明?!究键c透視】1、全等三角形的性質與判定;2、等腰(等邊)三角形的性質與判定;3、直角三角形的有關性質,勾股定理及其逆定理;4
2025-08-04 08:58
【摘要】精品資源第19課三角形與全等三角形知識點:三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關系,三角形的內角和,三角形的分類,全等形,全等三角形及其性質,三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質,逆命題和逆定理的概念,理解三角形,三角形的頂點,邊,內角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-25 12:49
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂
2025-08-02 01:22
【摘要】......全等三角形判定與性質專題訓練一、全等三角形實際應用問題1如圖,要測量河兩岸相對的兩
【摘要】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應邊____,對應角____.2.兩個三角形只有一組或兩組對應相等的元素,這兩個三角形全等;兩個三角形有三組對應相等的元素,這兩個三角形
2024-11-21 04:27
【摘要】......全等三角形—動點專題1.如圖,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設點P的運動時間為t秒:(1)PC=cm.(用t的代數(shù)式表示)(2
【摘要】......全等三角形證明1、已知:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBACDF21E:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求證:
2025-04-05 00:37
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-21 22:05