【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-23 01:35
【摘要】()dbafxx??定積分定義定積分的幾何意義:0lim??各部分面積的代數(shù)和可積的兩個(gè)充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(7條)§內(nèi)容回顧ix?()if?1ni??(大前提:函數(shù)有界)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aa
2025-01-26 05:32
【摘要】§內(nèi)容回顧()dbafxx??定積分定義定積分的幾何意義:01lim()niiifx??????各部分面積的代數(shù)和可積的充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aaxxf1.dbax?(
2024-11-09 21:17
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問(wèn)題
2025-07-28 11:18
【摘要】特點(diǎn):)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問(wèn)題如何提高精度?如何估計(jì)誤差?xx的一次多項(xiàng)式
2024-08-14 16:25
【摘要】第5章定積分及其應(yīng)用微積分基本公式習(xí)題解1.設(shè)函數(shù),求,?!窘狻坑深}設(shè)得,于是得,。2.計(jì)算下列各導(dǎo)數(shù):⑴;【解】。⑵;【解】。⑶;【解】。⑷?!窘狻?。3.設(shè)函數(shù)由方程所確定,求?!窘夥ㄒ弧糠匠讨型瓿煞e分即為,亦即為,得知,解出,得,于是得?!窘?/span>
2025-08-01 04:21
【摘要】第三節(jié)微積分基本公式一、問(wèn)題的提出二、變上限函數(shù)及其導(dǎo)數(shù)三、牛頓—萊布尼茨公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路
2025-07-26 17:38
【摘要】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點(diǎn)x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2025-07-28 11:20
【摘要】由親乃滴先輩們整理。 謹(jǐn)以此文獻(xiàn)給所有堅(jiān)持考前突擊的朋友們!??
2024-09-03 21:58
【摘要】第一講?函數(shù)、連續(xù)與極限一、理論要求函數(shù)的基本性質(zhì)(單調(diào)、有界、奇偶、周期)幾類(lèi)常見(jiàn)函數(shù)(復(fù)合、分段、反、隱、初等函數(shù))極限存在性與左右極限之間的關(guān)系夾逼定理和單調(diào)有界定理會(huì)用等價(jià)無(wú)窮小和羅必達(dá)法則求極限函數(shù)連續(xù)(左、右連續(xù))與間斷理解并會(huì)應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值、有界、介值)二、題型與解法(1
2025-07-27 10:42
【摘要】備考基礎(chǔ)·查清熱點(diǎn)命題·悟通遷移應(yīng)用·練透課堂練通考點(diǎn)課下提升考能首頁(yè)上一頁(yè)下一頁(yè)末頁(yè)結(jié)束數(shù)學(xué)第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-12-01 12:12
【摘要】微積分積分公式積分上限的函數(shù)及其導(dǎo)數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點(diǎn).現(xiàn)在我們來(lái)考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動(dòng),則對(duì)于每一個(gè)取定的x值,定積分有一個(gè)對(duì)應(yīng)值,所以它在[a,
2024-08-29 17:45
【摘要】(一)含有的積分()1.=2.=()3.=4.=5.=6.=7.=8.=9.=(二)含有的積分10.=11.=12.=13.=14.=15.=16.=17.=18.=(三)含有的積分19.=20.=21.=(四)含有的積分22.=23.=24.=25.=26.=27.=2
2024-09-05 22:01
【摘要】一、問(wèn)題的提出二、Pn和Rn的確定四、簡(jiǎn)單應(yīng)用五、小結(jié)思考題三、泰勒中值定理第五節(jié)泰勒(Taylor)公式一、問(wèn)題的提出1.設(shè))(xf在0x處連續(xù),則有2.設(shè))(xf在0x處可導(dǎo),則有例如,當(dāng)x很小時(shí),xex??1,xx??)1ln([???)
2024-09-07 12:38
【摘要】常用微積分公式???????基本積分公式均直接由基本導(dǎo)數(shù)公式表得到,因此,導(dǎo)數(shù)運(yùn)算的基礎(chǔ)好壞直接影響積分的能力,應(yīng)熟記一些常用的積分公式. 因?yàn)榍蟛欢ǚe分是求導(dǎo)數(shù)的逆運(yùn)算,所以由基本導(dǎo)數(shù)公式對(duì)應(yīng)可以得到基本積分公式.。(1)?????
2025-07-28 12:20