【摘要】一、全微分二、全微分在近似計算中的應用三、小結思考題第三節(jié)全微分及其應用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數對x和對y的偏微分(partialdifferential)二元函數對
2024-08-28 16:43
【摘要】一、問題的提出二、積分上限函數及其導數三、牛頓-萊布尼茨公式四、小結思考題第三節(jié)微積分基本公式變速直線運動中位置函數與速度函數的聯系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數,且0)(?tv
2024-08-28 08:39
【摘要】主要內容典型例題第六章定積分及其應用習題課(一)問題1:曲邊梯形的面積問題2:變速直線運動的路程存在定理廣義積分定積分定積分的性質定積分的計算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2024-09-07 12:42
【摘要】一、差分方程的簡單經濟應用二、小結第九節(jié)差分方程的簡單經濟應用一、差分方程的簡單經濟應用差分方程在經濟領域的應用十分廣泛,下面從具體的實例體會其應用的場合和應用的方法.??.01本利和年末的,求,且初始存款額為設為年利率,年存款總額,為設存款模型例一:tSrSSSrtStttt???解tttr
2024-09-07 12:41
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設函數)(
2024-09-07 12:46
【摘要】一、由邊際函數求原函數二、由變化率求總量第八節(jié)定積分的經濟應用三、收益流的現值和將來值一、由邊際函數求原函數25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【摘要】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設所求曲線為d2dyxx?2dyxx??積分,得2,
2024-09-07 12:40
【摘要】一、六個基本積分二、待定系數法舉例三、小結第四節(jié)有理函數的積分有理函數的定義:兩個多項式的商表示的函數稱之為有理函數.mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2024-09-07 12:39
【摘要】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
【摘要】一、問題的提出二、導數的定義四、函數可導性與連續(xù)性的關系五、小結思考題三、導數的幾何意義第一節(jié)導數概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
【摘要】一、高階導數的定義二、高階導數的求導法則三、小結思考題第三節(jié)高階導數一、高階導數的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-09-07 12:37
【摘要】一、正項級數及其審斂法二、小結思考題第二節(jié)正項級數及其審斂法一、正項級數及其審斂法??01????nnnuu級數有界部分和數列收斂正項級數}{1nnnsu????定理1(比較審斂法)若???1nnv收斂,則???1nnu
2024-08-28 16:41
【摘要】一、集合的概念二、集合的運算三、區(qū)間與鄰域第一節(jié)集合四、小結思考題一、集合的概念(set):具有確定性質的對象的總體.組成集合的每一個對象稱為該集合的元素.,Ma?.Ma?例如:太陽系的九大行星;教室里的所有同學。如果a是集合M中的元素,則記作
【摘要】一、羅爾定理二、拉格朗日中值定理四、小結思考題三、柯西中值定理第一節(jié)中值定理一、羅爾(Rolle)定理羅爾(Rolle)定理如果函數)(xf在閉區(qū)間],[ba上連續(xù),在開區(qū)間),(ba內可導,且在區(qū)間端點的函數值相等,即)()(bfaf?,那末在),(ba內至少有一點)
【摘要】主要內容典型例題第十章微分方程與差分方程習題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結構相關定理二階常系數線性方程解的結構特征方程的根及其對應項f(x)的形式及其特解形式高階方程待
2024-08-28 16:42