freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)-二次函數(shù)的專項-培優(yōu)-易錯-難題練習(xí)題-文庫吧資料

2025-03-30 22:23本頁面
  

【正文】 KE∥y軸,交BC于點E.結(jié)合已知條件和(2)中的結(jié)果求得S△CBK=.則根據(jù)圖形得到:S△CBK=S△CEK+S△BEK=EK?m+?EK?(4﹣m),把相關(guān)線段的長度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).解:(1)把點A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得,解得,所以該拋物線的解析式為:y=x2﹣x﹣3;(2)設(shè)運(yùn)動時間為t秒,則AP=3t,BQ=t.∴PB=6﹣3t.由題意得,點C的坐標(biāo)為(0,﹣3).在Rt△BOC中,BC==5.如圖1,過點Q作QH⊥AB于點H.∴QH∥CO,∴△BHQ∽△BOC,∴,即,∴HQ=t.∴S△PBQ=PB?HQ=(6﹣3t)?t=﹣t2+t=﹣(t﹣1)2+.當(dāng)△PBQ存在時,0<t<2∴當(dāng)t=1時,S△PBQ最大=.答:運(yùn)動1秒使△PBQ的面積最大,最大面積是;(3)設(shè)直線BC的解析式為y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得,解得,∴直線BC的解析式為y=x﹣3.∵點K在拋物線上.∴設(shè)點K的坐標(biāo)為(m,m2﹣m﹣3).如圖2,過點K作KE∥y軸,交BC于點E.則點E的坐標(biāo)為(m,m﹣3).∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.當(dāng)△PBQ的面積最大時,∵S△CBK:S△PBQ=5:2,S△PBQ=.∴S△CBK=.S△CBK=S△CEK+S△BEK=EK?m+?EK?(4﹣m)=4?EK=2(﹣m2+m)=﹣m2+3m.即:﹣m2+3m=.解得 m1=1,m2=3.∴K1(1,﹣),K2(3,﹣).點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有待定系數(shù)法求二次函數(shù)解析式和三角形的面積求法.在求有關(guān)動點問題時要注意該點的運(yùn)動范圍,即自變量的取值范圍.8.如圖,若b是正數(shù),直線l:y=b與y軸交于點A;直線a:y=x﹣b與y軸交于點B;拋物線L:y=﹣x2+bx的頂點為C,且L與x軸右交點為D.(1)若AB=8,求b的值,并求此時L的對稱軸與a的交點坐標(biāo);(2)當(dāng)點C在l下方時,求點C與l距離的最大值;(3)設(shè)x0≠0,點(x0,y1),(x0,y2),(x0,y3)分別在l,a和L上,且y3是y1,y2的平均數(shù),求點(x0,0)與點D間的距離;(4)在L和a所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點稱為“美點”,分別直接寫出b=2019和b=“美點”的個數(shù).【答案】(1)b=4,(2,﹣2 );(2)1;(3);(4)當(dāng)b=2019時“美點”的個數(shù)為4040個,b=“美點”的個數(shù)為1010個.【解析】【分析】(1)求出A、B 的坐標(biāo),由AB=8,可求出b的值.從而得到L的解析式,找出L的對稱軸與a的交點即可;(2)通過配方,求出L的頂點坐標(biāo),由于點C在l下方,則C與l的距離,配方即可得出結(jié)論;(3)由題意得y1+y2=2y3,進(jìn)而有b+x0﹣b=2(﹣x02+bx0)解得x0的值,求出L與x軸右交點為D的坐標(biāo),即可得出結(jié)論;(4)①當(dāng)b=2019時,拋物線解析式L:y=﹣x2+2019x直線解析式a:y=x﹣2019,美點”總計4040個點,②當(dāng)b=,拋物線解析式L:y=﹣x2+,直線解析式a:y=x﹣,“美點”共有1010個.【詳解】(1)當(dāng)x=0吋,y=x﹣b=﹣b,∴B (0,﹣b).∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4,∴L:y=﹣x2+4x,∴L的對稱軸x=2,當(dāng)x=2時,y=x﹣4=﹣2,∴L的對稱軸與a的交點為(2,﹣2 );(2)y=﹣(x)2,∴L的頂點C(,).∵點C在l下方,∴C與l的距離b(b﹣2)2+1≤1,∴點C與l距離的最大值為1;(3)∵y3是y1,y2的平均數(shù),∴y1+y2=2y3,∴b+x0﹣b=2(﹣x02+bx0),解得:x0=0或x0=b.∵x0≠0,∴x0=b,對于L,當(dāng)y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得:x1=0,x2=b.∵b>0,∴右交點D(b,0),∴點(x0,0)與點D間的距離b﹣(b).(4)①當(dāng)b=2019時,拋物線解析式L:y=﹣x2+2019x,直線解析式a:y=x﹣2019.聯(lián)立上述兩個解析式可得:x1=﹣1,x2=2019,∴可知每一個整數(shù)x的值都對應(yīng)的一個整數(shù)y值,且﹣1和2019之間(包括﹣1和﹣2019)共有2021個整數(shù);∵另外要知道所圍成的封閉圖形邊界分兩部分:線段和拋物線,∴線段和拋物線上各有2021個整數(shù)點,∴總計4042個點.∵這兩段圖象交點有2個點重復(fù),∴美點”的個數(shù):4042﹣2=4040(個);②當(dāng)b=,拋物線解析式L:y=﹣x2+,直線解析式a:y=x﹣,聯(lián)立上述兩個解析式可得:x1=﹣1,x2=,∴當(dāng)x取整數(shù)時,在一次函數(shù)y=x﹣,y取不到整數(shù)值,因此在該圖象上“美點”為0,在二次函數(shù)y=x2+,當(dāng)x為偶數(shù)時,函數(shù)值y可取整數(shù),可知﹣ 間有1010個偶數(shù),因此“美點”共有1010個.故b=2019時“美點”的個數(shù)為4040個,b=“美點”的個數(shù)為1010個.【點睛】本題考查了二次函數(shù),熟練運(yùn)用二次函數(shù)的性質(zhì)以及待定系數(shù)法求函數(shù)解析式是解題的關(guān)鍵.9.如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線C1的頂點為G.(1)求出拋物線C1的解析式,并寫出點G的坐標(biāo);(2)如圖2,將拋物線C1向下平移k(k>0)個單位,得到拋物線C2,設(shè)C2與x軸的交點為A′、B′,頂點為G′,當(dāng)△A′B′G′是等邊三角形時,求k的值:(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線CC2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與△AOQ全等,若存在,直接寫出點M,N的坐標(biāo):若不存在,請說明理由.【答案】(1)拋物線C1的解析式為y=﹣x2+2x+3,點G的坐標(biāo)為(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由點A的坐標(biāo)及OC=3OA得點C坐標(biāo),將A、C坐標(biāo)代入解析式求解可得;(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x軸于點D,設(shè)BD′=m,由等邊三角形性質(zhì)知點B′的坐標(biāo)為(m+1,0),點G′的坐標(biāo)為(1,m),代
點擊復(fù)制文檔內(nèi)容
小學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1