freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)-二次函數(shù)的專項(xiàng)-培優(yōu)易錯試卷練習(xí)題含答案-文庫吧資料

2025-03-30 22:23本頁面
  

【正文】 CF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.【詳解】(1)由題意把點(diǎn)(1,0)、(2,3)代入y=ax2+2x+c,得,解得a=1,c=3,∴此拋物線C函數(shù)表達(dá)式為:y=x2+2x+3;(2)如圖1,過點(diǎn)M作MH⊥x軸于H,交直線AB于K,將點(diǎn)(1,0)、(2,3)代入y=kx+b中,得,解得,k=1,b=1,∴yAB=x+1,設(shè)點(diǎn)M(a,a2+2a+3),則K(a,a+1),則MK=a2+2a+3(a+1)=(a)2+,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)a=時(shí),MK有最大長度,∴S△AMB最大=S△AMK+S△BMK=MK?AH+MK?(xBxH)=MK?(xBxA)=3=,∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時(shí),S最大=2S△AMB最大=2=,M(,);(3)存在點(diǎn)F,∵y=x2+2x+3=(x1)2+4,∴對稱軸為直線x=1, 當(dāng)y=0時(shí),x1=1,x2=3,∴拋物線與點(diǎn)x軸正半軸交于點(diǎn)C(3,0),如圖2,分別過點(diǎn)B,C作直線y=的垂線,垂足為N,H,拋物線對稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,設(shè)F(1,a),連接BF,CF,則BF=BN=3=,CF=CH=,由題意可列:,解得,a=,∴F(1,).【點(diǎn)睛】此題考查了待定系數(shù)法求解析式,還考查了用函數(shù)思想求極值等,解題關(guān)鍵是能夠判斷出當(dāng)平行四邊形MANB的面積最大時(shí),△ABM的面積最大,且此時(shí)線段MK的長度也最大.14.如圖,已知拋物線過點(diǎn)A(,3) 和B(3,0),過點(diǎn)A作直線AC//x軸,交y軸與點(diǎn)C.(1)求拋物線的解析式; (2)在拋物線上取一點(diǎn)P,過點(diǎn)P作直線AC的垂線,垂足為D,連接OA,使得以A,D,P為頂點(diǎn)的三角形與△AOC相似,求出對應(yīng)點(diǎn)P的坐標(biāo); (3)拋物線上是否存在點(diǎn)Q,使得?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由. 【答案】(1);(2)P點(diǎn)坐標(biāo)為(4 ,6)或(, );(3)Q點(diǎn)坐標(biāo)(3,0)或(2,15)【解析】【分析】(1)把A與B坐標(biāo)代入拋物線解析式求出a與b的值,即可確定出解析式;(2)設(shè)P坐標(biāo)為,表示出AD與PD,由相似分兩種情況得比例求出x的值,即可確定出P坐標(biāo);(3)存在,求出已知三角形AOC邊OA上的高h(yuǎn),過O作OM⊥OA,截取OM=h,與y軸交于點(diǎn)N,分別確定出M與N坐標(biāo),利用待定系數(shù)法求出直線MN解析式,與拋物線解析式聯(lián)立求出Q坐標(biāo)即可.【詳解】(1)把,和點(diǎn),代入拋物線得:,解得:,則拋物線解析式為;(2)當(dāng)在直線上方時(shí),設(shè)坐標(biāo)為,則有,當(dāng)時(shí),即,整理得:,即,解得:,即或(舍去),此時(shí),;當(dāng)時(shí),即,整理得:,即,解得:,即或(舍去),此時(shí),;當(dāng)點(diǎn)時(shí),也滿足;當(dāng)在直線下方時(shí),同理可得:的坐標(biāo)為,綜上,的坐標(biāo)為,或,或,或;(3)在中,根據(jù)勾股定理得:, ,,邊上的高為,過作,截取,過作,交軸于點(diǎn),如圖所示:在中,即,過作軸,在中,即,設(shè)直線解析式為,把坐標(biāo)代入得:,即,即,聯(lián)立得:,解得:或,即,或,則拋物線上存在點(diǎn),使得,此時(shí)點(diǎn)的坐標(biāo)為,或,.【點(diǎn)睛】二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質(zhì),點(diǎn)到直線的距離公式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.15.如圖1,四邊形是矩形,點(diǎn)的坐標(biāo)為,沿以每秒1個(gè)單位長度的速度向點(diǎn)運(yùn)動,同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒2個(gè)單位長度的速度向點(diǎn)運(yùn)動,.(1)當(dāng)時(shí),線段的中點(diǎn)坐標(biāo)為________;(2)當(dāng)與相似時(shí),求的值;(3)當(dāng)時(shí),拋物線經(jīng)過、兩點(diǎn),與軸交于點(diǎn),拋物線的頂點(diǎn)為,使,若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說明理由.【答案】(1)的中點(diǎn)坐標(biāo)是;(2)或;(3),.【解析】分析:(1)先根據(jù)時(shí)間t=2,和速度可得動點(diǎn)P和Q的路程OP和AQ的長,再根據(jù)中點(diǎn)坐標(biāo)公式可得結(jié)論;(2)根據(jù)矩形的性質(zhì)得:∠B=∠PAQ=90176。∴P點(diǎn)坐標(biāo)為:P2(﹣1,)或P3(﹣1,﹣);∴當(dāng)CM=CP時(shí),由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P點(diǎn)坐標(biāo)為:P4(﹣1,6).綜上所述存在符合條件的點(diǎn)P,其坐標(biāo)為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2),理由如下:如答圖2,點(diǎn)C(0,3)關(guān)于對稱軸x=﹣1的對稱點(diǎn)C′的坐標(biāo)是(﹣2,3),連接AC′,直線AC′與對稱軸的交點(diǎn)即為點(diǎn)Q.設(shè)直線AC′函數(shù)關(guān)系式為:y=kx+t(k≠0).將點(diǎn)A(1,0),C′(﹣2,3)代入,得,解得,所以,直線AC′函數(shù)關(guān)系式為:y=﹣x+1.將x=﹣1代入,得y=2,即:Q(﹣1,2);(4)過點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四邊形BOCE=BF?EF+(OC+EF)?OF=(a+3)?(﹣a2﹣2a+3)+(﹣a2﹣2a+6)?(﹣a)=﹣a2﹣a+=﹣(a+)2+,∴當(dāng)a=﹣時(shí),S四邊形BOCE最大,且最大值為.此時(shí),點(diǎn)E坐標(biāo)為(﹣ ,).【點(diǎn)睛】本題主要考查了二次函數(shù)的綜合知識,要注意的是(2)中,不確定等腰三角形哪條邊是底邊的情況下,要分類進(jìn)行求解,不要漏解.10.如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點(diǎn).(1)求拋物線的函數(shù)表達(dá)式;(2)如圖1,P為拋物線上在第二象限內(nèi)的一點(diǎn),若△PAC面積為3,求點(diǎn)P的坐標(biāo);(3)如圖2,D為拋物線的頂點(diǎn),在線段AD上是否存在點(diǎn)M,使得以M,A,O為頂點(diǎn)的三角形與△ABC相似?若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由.【答案】(1)y=﹣x2﹣2x+3;(2)點(diǎn)P的坐標(biāo)為(﹣1,4)或(﹣2,3);(3)存在,(,)或(,),見解析.【解析】【分析】(1)利用待定系數(shù)法,然后將A、B、C的坐標(biāo)代入解析式即可求得二次函數(shù)的解析式;(2))過P點(diǎn)作PQ垂直x軸,交AC于Q,把△APC分成兩個(gè)△APQ與△CPQ,把PQ作為兩個(gè)三角形的底,通過點(diǎn)A,C的橫坐標(biāo)表示出兩個(gè)三角形的高即可求得三角形的面積.(3)通過三角形函數(shù)計(jì)算可得∠DAO=∠ACB,使得以M,A,O為頂點(diǎn)的三角形與△ABC相似,則有兩種情況,∠AOM=∠CAB=45176。得到△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖2,△EPG、△PHF都為等腰直角三角形,則PE=PG,PF=PH,設(shè)P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),接著利用t表示PF、PE,這樣PE+EF=2PE+PF=﹣t2+4t,然后利用二次函數(shù)的性質(zhì)解決問題.試題解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴拋物線y=x2+bx+c的表達(dá)式為y=x2﹣4x+3;(2)如圖1,拋物線的對稱軸為直線x=﹣=2,設(shè)D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,當(dāng)△BCD是以BC為直角邊,BD為斜邊的直角三角形時(shí),BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此時(shí)D點(diǎn)坐標(biāo)為(2,5);當(dāng)△BCD是以BC為直角邊,CD為斜邊的直角三角形時(shí),BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此時(shí)D點(diǎn)坐標(biāo)為(2,﹣1);(3)易得BC
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1