【摘要】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-09 10:13
2024-12-12 20:20
【摘要】基本不等式的證明課時目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
【摘要】3.基本不等式的證明學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點(diǎn)C,使AC=a,CB=b,過點(diǎn)C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-21 19:03
【摘要】課題:不等式專題復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】會運(yùn)用基本不等式解決一些問題.【課前預(yù)習(xí)】1、(1)函數(shù)2231xxy???的定義域?yàn)開________________;(2)比較大?。?22?____________
【摘要】基本不等式的證明(1)教學(xué)目標(biāo):一、知識與技能1.探索并了解基本不等式的證明過程,體會證明不等式的基本思想方法;2.會用基本不等式解決簡單的最大(?。┲祮栴};3.學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;4.理解兩個正數(shù)的算術(shù)平均
2024-11-24 01:04
【摘要】課題:基本不等式(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】理解算術(shù)平均數(shù)與幾何平均數(shù)的定義及它們的關(guān)系.探究并了解基本不等式的證明過程,會用各種方法證明基本不等式.理解基本不等式的意義,并掌握基本不等式中取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等.【課前預(yù)習(xí)】1.當(dāng)
【摘要】課題:基本不等式的證明(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用基本不等式求解函數(shù)最值問題.【課前預(yù)習(xí)】1.當(dāng)0??ab時,比較baabbaabbaab???????????????22222,,,,,的大?。ㄟ\(yùn)用基本不等式及比較法)
【摘要】基本不等式的證明(2)教學(xué)目標(biāo):一、知識與技能1.進(jìn)一步掌握基本不等式;2.學(xué)會推導(dǎo)并掌握均值不等式定理;3.會運(yùn)用基本不等式求某些函數(shù)的最值,求最值時注意一正二定三等四同.4.使學(xué)生能夠運(yùn)用均值不等式定理來研究函數(shù)的最大值和最小值問題;基本不等式在證明題和求最值方面的應(yīng)用.二、過程與方法通過幾
【摘要】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當(dāng)時,當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-22 08:48
【摘要】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-09 16:33
【摘要】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導(dǎo)過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時,有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時,等號成立.(1)公式中a,b的取值是
【摘要】基本不等式的應(yīng)用課時目標(biāo);(小)值問題.1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.2.利用
2024-12-09 10:12
【摘要】高中數(shù)學(xué)基本不等式的巧用1.基本不等式:≤(1)基本不等式成立的條件:a>0,b>0.(2)等號成立的條件:當(dāng)且僅當(dāng)a=b時取等號.2.幾個重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同號);(3)ab≤2(a,b∈R);(4)≥2(a,b∈R).3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a>0,b>0,則a,b的算術(shù)平均數(shù)為,幾何平均數(shù)
2025-04-07 05:08
【摘要】第2課時基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2024-08-03 17:21