【摘要】高中數(shù)學基本不等式的巧用1.基本不等式:≤(1)基本不等式成立的條件:a>0,b>0.(2)等號成立的條件:當且僅當a=b時取等號.2.幾個重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同號);(3)ab≤2(a,b∈R);(4)≥2(a,b∈R).3.算術平均數(shù)與幾何平均數(shù)設a>0,b>0,則a,b的算術平均數(shù)為,幾何平均數(shù)
2025-04-07 05:08
【摘要】基本不等式知識點總結向量不等式:【注意】:同向或有;反向或有;不共線.(這些和實數(shù)集中類似)代數(shù)不等式:同號或有;異號或有.絕對值不等式:雙向不等式:(左邊當時取得等號,右邊當時取得等號.)放縮不等式:①,則.【說明】:(,糖水的濃度問題).【拓展】:.②,,則;③,;④,.
2025-06-26 17:20
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-09 16:33
【摘要】高中數(shù)學不等式練習題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( )A.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
2025-04-07 05:05
【摘要】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應用中的最值問題通常轉化為y=ax+bx
2025-07-26 17:21
【摘要】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-09 10:13
【摘要】專題基本不等式編者:高成龍專題基本不等式【一】基礎知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當且僅當時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-08 19:27
【摘要】第一篇:基本不等式練習題 重難點:了解基本不等式的證明過程;會用基本不等式解決簡單的最大(?。┲祮栴}.考綱要求:①了解基本不等式的證明過程. ②會用基本不等式解決簡單的最大(?。┲祮栴}.經(jīng)典例...
2024-10-29 01:07
【摘要】不等式的基本知識(一)不等式與不等關系1、應用不等式(組)表示不等關系;不等式的主要性質:(1)對稱性: (2)傳遞性:(3)加法法則:;(同向可加)(4)乘法法則:; (同向同正可乘)(5)倒數(shù)法則: (6)乘方法則:(7)開方法則:2、應用不等式的性質比較兩個實數(shù)的大小:作差法(作差——變形——判
2025-06-29 07:09
【摘要】基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-19 22:38
【摘要】不等式的基本知識(一)不等式與不等關系1、應用不等式(組)表示不等關系;不等式的主要性質:(1)對稱性: (2)傳遞性:(3)加法法則:;(同向可加)(4)乘法法則:; (同向同正可乘)(5)倒數(shù)法則: (6)乘方法則:(7)開方法則:2、應用不等式的性質比較兩個實數(shù)的大?。鹤鞑罘ǎㄗ鞑睢冃巍袛喾枴Y論)3、應用不等
2025-06-29 07:20
【摘要】基本不等式1.若,下列不等式恒成立的是 ?。ā 。〢. B. C. D.2.若且,則下列四個數(shù)中最大的是 ()A. ?。拢 。茫?ab ?。模產(chǎn)3.設x0,則的最大值為( ?。粒? B. ?。茫 ?/span>
2025-06-26 02:10
【摘要】第一篇:必修五基本不等式知識點 第三章:不等式、不等式解法、線性規(guī)劃 不等(等)號的定義:a-b0?ab;a-b=0?a=b;a-b0?a (1)ab?ba(對稱性)(2)ab...
2024-10-29 04:09
【摘要】第一篇:高中數(shù)學知識點:不等式的證明及應用 不等式的證明及應用 知識要點: 1.不等式證明的基本方法: ìa-b0?ab ?(1)比較法:ía-b=0?a=b ?a-b0?ab? ...
2024-11-06 18:11
【摘要】高中數(shù)學不等式專題教師版一、高考動態(tài)考試內(nèi)容:不等式.不等式的基本性質.不等式的證明.不等式的解法.含絕對值的不等式.數(shù)學探索?:數(shù)學探索?(1)理解不等式的性質及其證明.數(shù)學探索?(2)掌握兩個(不擴展到三個)正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應用.數(shù)學探索?(3)掌握分析法、綜合法、比較法證明簡單的不