【摘要】圓的對稱性圓的軸對稱性(圓是軸對稱圖形)垂徑定理及其推論圓的中心對稱性(旋轉(zhuǎn)不變性)圓心角定理條件結(jié)論在同圓或等圓中如果圓心角相等那么圓心角所對的弧相等圓心角所對的弦相等圓心角所對的弦的弦心距相等圓心角定理:在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦相等,
2024-12-01 23:42
【摘要】課題:圓心角(1)教學(xué)目標(biāo):1、經(jīng)歷探索圓的中心對稱性和旋轉(zhuǎn)不變性的過程,2、理解圓心角的概念,并掌握“在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦相等”的定理(圓心角定理)。3、體驗利用旋轉(zhuǎn)變換來研究圓的性質(zhì)的思想方法。教學(xué)重點:圓心角定理教學(xué)難點:根據(jù)圓的旋轉(zhuǎn)不變性推出圓心角定理,需用到圖形的旋轉(zhuǎn)變換]教學(xué)內(nèi)容設(shè)計
2024-12-13 06:16
【摘要】圓心角(2)圓心角定理逆定理圓的對稱性圓的軸對稱性(圓是軸對稱圖形)垂徑定理及其推論圓的中心對稱性(旋轉(zhuǎn)不變性)圓心角定理?由①∠AOB=∠COD②OE⊥AB可推得⌒⌒④AB=CD,(1)若則∠AOB=∠COD嗎?⌒⌒
2024-10-16 16:39
【摘要】DCBAO課題:圓心角和圓周角同步練習(xí)一、填空題:1,等邊三角形ABC的三個頂點都在⊙O上,D是AC上任一點(不與A、C重合),則∠ADC的度數(shù)是________§科§網(wǎng)]DCBAOEDCBAODCBAO(
2024-12-09 01:09
【摘要】圓心角所對的弧為AB,AOB?過點O作弦AB的垂線,垂足為M,OABM頂點在圓心的角,叫圓心角,如,AOB?所對的弦為AB;圖1OM是唯一的。
2024-12-12 04:05
【摘要】圓心角、弧、弦、弦心距之間的關(guān)系圓的對稱性圓的軸對稱性(圓是軸對稱圖形)垂徑定理及其推論圓的中心對稱性????(一)、圓的中心對稱性(1)若將圓以圓心為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°,你能發(fā)現(xiàn)什么?圓繞其圓心旋轉(zhuǎn)180°后能與原來圖形相重合。因此,圓是中心對稱圖形,對
2024-11-16 00:18
【摘要】圓心角第1課時圓心角定理1.(4分)下列語句中,正確的有()A.在同圓或等圓中,相等的圓心角所對的弧相等B.平分弦的直徑垂直于弦C.長度相等的兩條弧相等D.圓是軸對稱圖形,任何一條直徑都是它的對稱軸2.(4分)如圖所示是一個旋轉(zhuǎn)對稱圖形,以O(shè)為旋轉(zhuǎn)中心,以下列哪一個角為旋轉(zhuǎn)角旋
2024-12-11 13:18
【摘要】......圓心角和圓周角一、經(jīng)典考題賞析例1.(成都)如圖,內(nèi)接于,AB=BC,,AD為的直徑,AD=6,那么BD=變式題組:1.(河北)如圖,四個邊長為1的小正方形拼成一個大
2025-03-28 00:01
【摘要】·圓心角:頂點在圓心的角叫做圓心角.OBAA’DBAOD’B’或DBAOA’OD’B’’和結(jié)論?在同圓或等圓中,如果①兩個圓心角,②兩條弧,③兩條弦,④兩條弦心距中,有一組量相等,那么它們所對應(yīng)的
2024-08-16 04:46
【摘要】圓心角第2課時圓心角定理的逆定理1.(4分)下列說法中正確的是()A.等弦所對的弧相等B.等弧所對的弦相等C.圓心角相等,所對的弦相等D.弦相等,所對的圓心角相等2.(4分)如圖所示,已知AB是⊙O的直徑,C,D是BE︵的三等分點,∠
2024-12-11 13:07
【摘要】圓心角、圓周角第2章圓圓心角知識目標(biāo)目標(biāo)突破第2章圓總結(jié)反思知識目標(biāo)1.通過觀察車輪、鐘表等圖案,理解圓心角的概念.2.通過回顧圓的旋轉(zhuǎn)不變性,理解圓心角、弧、弦之間的關(guān)系.圓心角目標(biāo)突破目標(biāo)一
2025-06-18 12:12
【摘要】·圓心角:我們把頂點在圓心的角叫做圓心角.OBA在⊙O中,∠AOB就是圓心角,弦AB是這個圓心角所對的弦,是它所對的弧AB如圖,將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠A’OB’的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么?根據(jù)旋轉(zhuǎn)的性質(zhì),將圓心角∠AOB繞圓心O旋轉(zhuǎn)
2024-11-22 17:44
【摘要】§圓心角和圓周角一、課題§圓心角和圓周角二、教學(xué)目標(biāo)探索圓心角的性質(zhì)的過程三、教學(xué)重點和難點重點:經(jīng)歷探索圓心角性質(zhì)的過程.難點:圓心角性質(zhì)的應(yīng)用.四、教學(xué)手段現(xiàn)代課堂教學(xué)手段]五、教學(xué)方法啟發(fā)式教學(xué)六、教學(xué)過程設(shè)計(一)、新授
2024-12-13 08:46
【摘要】根據(jù)旋轉(zhuǎn)的性質(zhì),將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠A′OB′的位置時,∠AOB=∠A′OB′,射線OA與OA′重合,OB與OB′重合.而同圓的半徑相等,OA=OA′,OB=OB′,∴點A與A′重合,B與B′重合.·OAB探究·OABA′B′A′B
2024-11-15 08:25
2025-06-17 22:11