【摘要】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識(shí)梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為_(kāi)_____,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號(hào)表示a-b0?
2024-11-23 23:20
【摘要】本章回顧1.不等式的基本性質(zhì)(1)比較兩個(gè)實(shí)數(shù)的大小兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,有a-b0?ab;a-b=0?a=b;a-b0,則ab1?ab;ab=1?a=b;ab1?ab.(2)不等式
【摘要】不等式的實(shí)際應(yīng)用1.解有關(guān)不等式的應(yīng)用題,首先要選用合適的字母表示題中的未知數(shù),再由題中給出的不等量關(guān)系,列出關(guān)于未知數(shù)的不等式(組),然后解列出的不等式(組),最后結(jié)合問(wèn)題的實(shí)際意義寫(xiě)出答案.2.在實(shí)際應(yīng)用問(wèn)題中,若應(yīng)用均值不等式求最值同樣必須確?!耙徽⒍?、三相等”的原則.“一正”即必須滿
【摘要】§一元二次不等式及其解法(二)自主學(xué)習(xí)知識(shí)梳理1.解分式不等式的同解變形法則(1)f?x?g?x?0?________________;(2)f?x?g?x?≤0?________________;(3)f?x?g?x?≥a?f?x?-ag?x?g?x?≥0.2.處理不等式恒成立問(wèn)題的
【摘要】§均值不等式(二)自主學(xué)習(xí)知識(shí)梳理1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)________時(shí),積xy有最________值為_(kāi)_______.(2)若xy=p(積p為定值),則當(dāng)________時(shí),和x+y有最________值為_(kāi)_______.2.利
2024-11-23 00:36
【摘要】數(shù)列(二)自主學(xué)習(xí)知識(shí)梳理1.?dāng)?shù)列可以看作是一個(gè)定義域?yàn)開(kāi)___________(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量按照從小到大的順序依次取值時(shí),對(duì)應(yīng)的一列________.2.一般地,一個(gè)數(shù)列{an},如果從________起,每一項(xiàng)都大于它的前一項(xiàng),即____________,
【摘要】§均值不等式(一)自主學(xué)習(xí)知識(shí)梳理1.如果a,b∈R,那么a2+b2______2ab(當(dāng)且僅當(dāng)________時(shí)取“=”號(hào)).2.若a,b都為_(kāi)_______數(shù),那么a+b2________ab(當(dāng)且僅當(dāng)a________b時(shí),等號(hào)成立),稱上述不等式為_(kāi)_______不等式,
【摘要】均值不等式(1)學(xué)習(xí)目標(biāo)、幾何平均值的概念。222abab??幾何意義。、證明、求最值等問(wèn)題。:兩個(gè)不等式的證明和區(qū)別:理解“當(dāng)且僅當(dāng)a=b時(shí)取等號(hào)”的數(shù)學(xué)內(nèi)涵自學(xué)提綱、幾何平均值的概念基礎(chǔ)知識(shí)1.均
2024-11-21 05:40
【摘要】正弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.正弦定理:asinA=bsinB=csinC=2R的常見(jiàn)變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=____
2024-12-09 06:40
【摘要】§應(yīng)用舉例(二)自主學(xué)習(xí)知識(shí)梳理1.在△ABC中,有以下常用結(jié)論:(1)a+bc,b+ca,c+ab;(2)ab?________?____________;(3)A+B+C=π,A+B2=π2-C2;(4)sin(A+B)=_____
2024-12-09 06:38
【摘要】余弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.在△ABC中,邊a、b、c所對(duì)的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
【摘要】不等式復(fù)習(xí)學(xué)案班級(jí)學(xué)號(hào)姓名【課前預(yù)習(xí)】x的不等式2240mxx???的解集為??12xx???,則實(shí)數(shù)m的值為.2.設(shè)集合??2340,AxxxxR?
2024-11-24 01:07
【摘要】課題:一元二次不等式(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握一元二次不等式的解法;進(jìn)一步理解三個(gè)一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;會(huì)解一些簡(jiǎn)單的含參數(shù)的不等式.【課前預(yù)習(xí)】1.如何解一元二次不等式02???cbxax與02???
2024-11-24 01:05
【摘要】均值不等式(2)學(xué)習(xí)目標(biāo)、幾何平均值的概念。比較大小、證明、求最值和實(shí)際問(wèn)題。:基本不等式的應(yīng)用:利用基本不等式證明不等式和求最值。自學(xué)提綱、幾何平均值的概念:(1)數(shù)形結(jié)合思想、“整體與局部”(2)配湊等技巧基礎(chǔ)
2024-11-21 12:14
【摘要】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練§(一)學(xué)習(xí)要求1.理解均值不等式的內(nèi)容及證明.2.能熟練運(yùn)用均值不等式來(lái)比較兩個(gè)實(shí)數(shù)的大小.3.能初步運(yùn)用均值不等式證明簡(jiǎn)單的不等式.學(xué)法指導(dǎo)1.應(yīng)用均值不等式解決有關(guān)問(wèn)題必須緊扣它的適用條件,公式a2+b2≥2
2025-01-16 21:04