【摘要】實用標準文案平面向量中“三點共線定理”妙用對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當點P在線段AB上時, 當點P在線段AB之外時, 筆者在經(jīng)過多年高三復(fù)習教學(xué)中發(fā)現(xiàn),運用
2024-08-16 06:02
【摘要】平面向量中三點共線定理的應(yīng)用知識梳理(一)、對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:(二)、三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當點P在線段AB上時, 當點P在線段AB之外時,典例剖析例1、已知是的邊上的任一點,
2025-06-23 00:20
【摘要】向量三點共線定理及其擴展應(yīng)用詳解一、平面向量中三點共線定理的擴展及其應(yīng)用一、問題的提出及證明。1、向量三點共線定理:在平面中A、B、C三點共線的充要條件是:(O為平面內(nèi)任意一點),其中。那么、時分別有什么結(jié)證?并給予證明。結(jié)論擴展如下:1、如果O為平面內(nèi)直線BC外任意一點,則當時A與O點在直線BC同側(cè),時,A與O點在直線BC的異側(cè),證明如下
2025-06-28 02:12
【摘要】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-03-28 01:23
【摘要】蘇老師高中數(shù)學(xué)輔導(dǎo)教程★教師版§2.平面內(nèi)三點共線的向量表示描述平面內(nèi)三點共線方法有很多種,其中的向量表示,有以下兩種,我們可以把它們作為結(jié)論來應(yīng)用. 【結(jié)論1】點、、共線的充要條件是存在實數(shù),使得.【結(jié)論2】設(shè)是平面內(nèi)任意一點,點、、共線的充要條件是存在實數(shù)、,使得,其中.【結(jié)論1】很容易理解,下面我們利用【結(jié)論1
2024-08-15 23:24
【摘要】 平面向量的概念及其線性運算1.向量的有關(guān)概念名稱定義備注平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為0向量運算定 義法則(或幾何意義)運算律
2024-07-31 14:28
【摘要】上點在證明且若三點不共線若ABPnmRnmOBnOAmOPBAO:,1,,,,,?????“不是定理勝定理”的結(jié)論ODCBAODtOC?設(shè))(OByOAxt??)01(???t1,,???yxDBA三點共線?tyxtnm?????)(.,,,,,:的取值范圍求若外的點的
2024-08-16 05:53
【摘要】《平面向量共線的坐標表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標運算延伸的作用,它是在學(xué)生對平面向量的基本定理有了充分的認識和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標表示則為用“數(shù)”的運算處理“形”的問題搭建了橋梁,同時也為定比分點坐標公式和中點坐標公式的推導(dǎo)奠定了基礎(chǔ);向量共線的坐標表示,對立體幾何教材也有著深遠的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2024-08-18 15:05
【摘要】平面向量的坐標運算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應(yīng)一一對應(yīng)點AOA向量(,)xy坐標1122+eeaaa?12(,)aaa?1
2024-07-31 05:00
【摘要】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數(shù)溫故知新1.當時:0??2.當時:0
2024-08-26 23:54
【摘要】平面向量基本定理2022年8月22日星期一(0),,.(a0,0b0aabbab?????????向量與共線當且僅當有唯一一個實數(shù)使若當時,不唯一;當時,不存在)一、課前準備::共線向量定理復(fù)習1:12122:,
2024-08-05 16:48
【摘要】第一篇:《平面向量基本定理》教案 一、教學(xué)目標: : 了解平面向量基本定理及其意義,理解平面里的任何一個向量都可以用兩個不共線的向量來表示;能夠在具體問題中適當?shù)剡x取基底,使其他向量都能夠用基底...
2024-10-20 21:04
【摘要】第一篇:平面向量基本定理教案 § 教學(xué)目的: (1)了解平面向量基本定理; (2)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,初步掌握應(yīng)用向量解決實際問題的重要思想方法;(3)能夠...
2024-11-16 22:11
【摘要】平面向量基本定理問題情境火箭在飛行過程中的某一時刻速度可以分解成豎直向上和水平向前的兩個速度。在力的分解的平行四邊形過程中,我們看到一個力可以分解為兩個不共線方向的力之和。那么平面內(nèi)的任一向量否可以用兩個不共線的向量來表示呢?動畫演示平面向量基本定理12121122,,
2024-10-22 17:16
【摘要】平面向量基本定理課時練1.給出下面三種說法:①一個平面內(nèi)只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個平面內(nèi)有無數(shù)多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因為不共線的兩個向量都可以作為一組基底,所以一個平面內(nèi)有無數(shù)多個基底,又零向
2025-03-28 01:22