【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-20 08:18
【摘要】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點(diǎn)且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時(shí),有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-20 07:36
【摘要】(2012江西省)(本小題滿分12分)如圖,在梯形ABCD中,AB∥CD,E,F(xiàn)是線段AB上的兩點(diǎn),且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=△ADE,△CFB分別沿DE,CF折起,使A,B兩點(diǎn)重合與點(diǎn)G,得到多面體CDEFG.(1)求證:平面DEG⊥平面CFG;(2)求多面體CDEFG的體積。2012,山東(19)(本小題滿分12分)如圖,
2025-04-20 13:07
【摘要】立體幾何公理、定理推論匯總一、公理及其推論公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi)。符號語言:作用: ①用來驗(yàn)證直線在平面內(nèi);②用來說明平面是無限延展的。公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們還有其他公共點(diǎn),且所有這些公共點(diǎn)的集合是一條過這個(gè)公共點(diǎn)的直線。(那么它們有且只有一條通過這個(gè)公共點(diǎn)的公共直線)符號語言:作用:①
2025-07-28 06:10
【摘要】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個(gè)全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2025-07-21 00:17
【摘要】第一篇:文科立體幾何證明 立體幾何證明題常見題型 1、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC=1,E是PC的中 點(diǎn),作EF^PB交PB于點(diǎn)F. ...
2024-10-26 17:25
【摘要】立體幾何專題復(fù)習(xí)一、【知識總結(jié)】基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-03-28 06:44
【摘要】精品資源立體幾何復(fù)習(xí)易做易錯(cuò)題選如皋市教育局教研室一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點(diǎn),則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯(cuò)因:學(xué)生把向量看為直線。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點(diǎn)
【摘要】立體幾何之外接球秒殺第一種長方體正方體模型長方體各頂點(diǎn)可在一個(gè)球面上,長為abc,,,其體對角線為l.當(dāng)球?yàn)殚L方體的外接球時(shí),截面圖為長方體的對角面和其外接圓,故球的半徑例1(1)已知各頂點(diǎn)都在同一球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是()A.16pB.20pC.24
2025-07-27 12:09
【摘要】立體幾何專題1.如圖4,在邊長為1的等邊三角形中,分別是邊上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當(dāng)時(shí),求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點(diǎn),所以①,.在
2025-05-06 00:35
【摘要】1·如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn)。(Ⅰ)求證:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大?。á螅┰冢á颍┑臈l件下,側(cè)棱SC上是否存在一點(diǎn)E,∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。
2025-04-20 07:49
【摘要】立體幾何章節(jié)測試姓名________一、選擇題(共39分)1、一條直線和直線外兩點(diǎn)可確定平面的個(gè)數(shù)是()A、1B、2C、3D、1或22、已知直線a,b和平面,下面命題中正確的是()A、若a//,b,則a//bB、若a//,b//,則a//b
【摘要】空間距離問題(專注高三數(shù)學(xué)輔導(dǎo):QQ1550869062)空間中距離的求法是歷年高考考查的重點(diǎn),其中以點(diǎn)與點(diǎn)、點(diǎn)到線、點(diǎn)到面的距離為基礎(chǔ),求其他幾種距離一般化歸為這三種距離.●難點(diǎn)磁場(★★★★)如圖,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中點(diǎn).求:(1)Q到BD的距離;(2)P到平面BQ
【摘要】立體幾何二一、選擇題:1.下列命題中,正確的是 A.經(jīng)過不同的三點(diǎn)有且只有一個(gè)平面 B.分別在兩個(gè)平面內(nèi)的兩條直線一定是異面直線 C.垂直于同一個(gè)平面的兩條直線是平行直線 D.垂直于同一個(gè)平面的兩個(gè)平面平行2.給出四個(gè)命題:①線段AB在平面內(nèi),則直線AB不在內(nèi);②兩平面有一個(gè)公共點(diǎn),則一定有無數(shù)個(gè)公共點(diǎn);③三條平行直線共面;④有三個(gè)公共點(diǎn)的兩平
2025-03-28 06:43
【摘要】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時(shí),注意由“低維”到“高維”:“線線...
2024-11-15 05:58