【摘要】第六章二次型1.設(shè)方陣與合同,與合同,證明與合同.證:因?yàn)榕c合同,所以存在可逆矩,使,因?yàn)榕c合同,所以存在可逆矩,使.令,則可逆,于是有即與合同.2.設(shè)對(duì)稱,與合同,則對(duì)稱證:由對(duì)稱,故.因與合同,所以存在可逆矩陣,使,于是即為對(duì)稱矩陣.3.設(shè)A是n階正定矩陣,B為n階實(shí)對(duì)稱矩陣,
2025-07-01 22:10
【摘要】第一節(jié)方陣的特征值與特征向量二次型的概念一、特征值與特征向量的性質(zhì)三、特征值與特征向量的求法二、特征值與特征向量四、小結(jié)、思考題特征值問(wèn)題與二次型第六章二次型及其標(biāo)準(zhǔn)形的概念一、二次型及其標(biāo)準(zhǔn)形二、二次型的表示方法三、二次型的矩陣及秩的正交變換法四、化二次型為標(biāo)準(zhǔn)形五、小結(jié)、思考題
2024-08-26 20:37
【摘要】線代框架之二次型1.定義:二次型1211(,,,)nnTnijijijfxxxxAxaxx??????(其中ijjiaa?,即A為對(duì)稱矩陣,12(,,,)Tnxxxx?)。只含平方項(xiàng)的二次型稱為二次型的標(biāo)準(zhǔn)形(此時(shí)二次型的矩陣為對(duì)角矩陣)12(,,,)TnfxxxxA
2025-01-09 22:10
【摘要】第六章二次型一、基本概念n個(gè)變量的二次型是它們的二次齊次多項(xiàng)式函數(shù),一般形式為f(x1,x2,…,xn)=a11x12+2a12x1x2+2a13x1x3+…+2a1nx1xn+a22x22+2a23x1x3+…+2a1nx1xn+…+annxn2=.它可以用矩陣乘積的形式寫(xiě)出:構(gòu)造對(duì)稱矩陣A記,則f(x1,x2,…,xn)=XTA
2025-07-01 20:17
【摘要】線代框架之二次型1.定義:二次型(其中,即為對(duì)稱矩陣,)。只含平方項(xiàng)的二次型稱為二次型的標(biāo)準(zhǔn)形(此時(shí)二次型的矩陣為對(duì)角矩陣)經(jīng)過(guò)化為標(biāo)準(zhǔn)形(其中).注:二次型的標(biāo)準(zhǔn)形不是唯一的,與所作的正交變換有關(guān),但非零系數(shù)的個(gè)數(shù)是由,-1,0三個(gè)數(shù)中取值的稱為二次型的規(guī)范形,任意二次型均存在可逆變換化為規(guī)范形。:與合同設(shè)A和B是n階矩陣,若有可逆矩陣C使得,則稱A與B合同。合同的性質(zhì):;合
2024-09-03 13:55
【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-12 10:35
【摘要】《線性代數(shù)》習(xí)題答案習(xí)題一一、填空題1、82、1或-23、?????????????????????600012600166203212134、1?5、0??6、2121?
2024-09-08 21:16
【摘要】??nnnnnnnnxxaxxaxxaxaxaxaxxxf1,13113211222222211121222,,,?????????????稱為n元二次型.簡(jiǎn)稱二次型。的二次齊次函數(shù)個(gè)變量含有定義nxxxn,,,121?;,稱為是復(fù)數(shù)時(shí)當(dāng)fa
2024-10-22 01:17
【摘要】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
2024-11-09 22:39
【摘要】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時(shí),排列為偶排列,當(dāng)k為奇數(shù)時(shí),(1)1;(2)...
2024-11-09 12:06
【摘要】線性代數(shù)習(xí)題及答案習(xí)題一1.求下列各排列的逆序數(shù).(1)341782659;(2)987654321;(3)n(n?1)…321;(4)13…(2n?1)(2n)(2n?2)…2.【解】(1)τ(341782659)=11;(2)τ(987654321)=36;(3)
2025-01-12 10:34
【摘要】線性代數(shù)習(xí)題冊(cè)答案第一章行列式練習(xí)一班級(jí)學(xué)號(hào)姓名1.按自然數(shù)從小到大為標(biāo)準(zhǔn)次序,求下列各排列的逆序數(shù):(1)τ(3421)=5;(2)τ(135642)=6;(3)τ(13…(2n-1)(2n)…42)=2+4
2024-08-16 11:00
【摘要】線性代數(shù)陳建龍主編科學(xué)出版社課后習(xí)題答案
2025-07-01 21:06
【摘要】《線性代數(shù)》電子教案之十六1主要內(nèi)容第十四講二次型?二次型的概念,二次型的秩,二次型的矩陣表示式等概念;?二次型的標(biāo)準(zhǔn)形,合同矩陣,用正交變換將二次型化為標(biāo)準(zhǔn)形的方法和步驟;?配方法化二次型為標(biāo)準(zhǔn)形的方法,慣性定理;?二次型的正定性,正定
2025-01-04 11:24
【摘要】-1-習(xí)題解答習(xí)題一(A)1.用消元法解下列線性方程組:(1)??????????????.5432,9753,432321321321xxxxxxxxx解由原方程組得同解方程組12323234,23,xx
2024-09-02 11:35