【摘要】初中幾何練習(xí)題一.三角形一、填空題:1、三角形的三邊為1,,9,則的取值范圍是。2、已知三角形兩邊的長(zhǎng)分別為1和2,如果第三邊的長(zhǎng)也是整數(shù),那么第三邊的長(zhǎng)為。3、在△ABC中,若∠C=2(∠A+∠B),則∠C=度。4、如果△ABC的一個(gè)外角等于1500,且∠B=∠C,則∠A=
2025-03-27 12:34
【摘要】第一題:已知:外接于⊙,,,,、相交于點(diǎn),點(diǎn)為弧的中點(diǎn),連接、。求證:為等腰三角形第二題:如圖,為正方形邊上一點(diǎn),連接、,延長(zhǎng)交的平行線于點(diǎn),連接,且AC=AE。求證:第三題:已知:中,,,。求證:
2025-03-27 12:38
【摘要】專題:角平分線、線段的垂直平分線1、角平分線1定義:2性質(zhì):3判定:2、線段的垂直平分線1、定義:2、性質(zhì):3、判定:典型例題講解:1、如圖,在△ABC中,AD是∠BAC平分線,AD的垂直平分線分別交AB、BC延長(zhǎng)線于F、E求證:(1)∠EAD=∠EDA;(2)DF∥
2025-04-07 03:46
【摘要】1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2024-08-16 03:51
【摘要】淺談初中數(shù)學(xué)幾何中的“一題多解”摘要數(shù)學(xué)充滿著濃厚的趣味性和挑戰(zhàn)性,數(shù)學(xué)教學(xué)應(yīng)體現(xiàn)其科學(xué)性,尊重學(xué)生的個(gè)體差異,盡可能滿足學(xué)生的多樣化學(xué)習(xí)需求,讓學(xué)生根據(jù)自己的實(shí)際感受不同層次的學(xué)科味。問題情境的設(shè)計(jì),教學(xué)過程的展開,練習(xí)的安排要盡量體現(xiàn)發(fā)散思維,讓學(xué)生真正在幾何數(shù)學(xué)的思維上有所提高。關(guān)鍵字多樣化學(xué)習(xí)不同層次練習(xí)一題多解發(fā)散思維曾在初中三年級(jí)的
2025-03-27 12:33
【摘要】第一篇:幾何證明題練習(xí) 幾何證明題練習(xí) ,Rt△ABC中AB=AC,點(diǎn)D、E是線段AC上兩動(dòng)點(diǎn),且AD=EC,AM⊥BD,垂足為M,AM的延長(zhǎng)線交BC于點(diǎn)N,直線BD與直線NE相交于點(diǎn)F。試判斷△...
2024-10-27 12:16
【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點(diǎn),O是外心,求證AO∥FG問題補(bǔ)充: 證明:延長(zhǎng)AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【摘要】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
【摘要】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)點(diǎn),∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.(初二)
2025-06-21 06:31
【摘要】初二數(shù)學(xué)競(jìng)賽基本幾何題1、如圖1,在△ABC中,AD⊥BC于D,AB+BD=CD。證明∠B=2∠C。2、如圖2,在△ABC中,AB=AC。D,E分別是BC,AC上的點(diǎn)。問∠BAD與∠CDE滿足什么條件時(shí),AD=AE。3、如圖3,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A-CD=3。求BC+DE的
2025-04-07 03:49
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】初中數(shù)學(xué):幾何證明題的思路要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學(xué)們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對(duì)于證明題,有三種思考方式:(1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向
2025-04-07 03:50
【摘要】初中幾何證明練習(xí)題1.如圖,在△ABC中,BF⊥AC,CG⊥AD,F(xiàn)、G是垂足,D、E分別是BC、FG的中點(diǎn),求證:DE⊥FG證明:連接DG、DF∵∠BGC=90°,BD=CD∴DG=BC同理DF=BC∴DG=DF又GE=FE∴DE⊥FG2.如圖,AE∥BC,D是BC的中點(diǎn),ED交AC于Q,ED的延長(zhǎng)線交AB的延長(zhǎng)線于P,求證:PD·Q
2025-03-27 12:35
【摘要】初中幾何證明題一.,點(diǎn)是中點(diǎn),,求證:,在中,,,,點(diǎn)是上一點(diǎn),連結(jié),過點(diǎn)做交于.探究與的數(shù)量關(guān)系.,在中,,點(diǎn)在上,點(diǎn)在的延長(zhǎng)線上,且,交于點(diǎn).探究與的數(shù)量關(guān)系.